
2
RIGID MOTIONS AND

HOMOGENEOUS
TRANSFORMATIONS

A large part of robot kinematics is concerned with the establishment of
various coordinate systems to represent the positions and orientations of rigid
objects, and with transformations among these coordinate systems. Indeed,
the geometry of three-dimensional space and of rigid motions plays a central
role in all aspects of robotic manipulation. In this chapter we study the oper-
ations of rotation and translation, and introduce the notion of homogeneous
transformations.1 Homogeneous transformations combine the operations of
rotation and translation into a single matrix multiplication, and are used in
Chapter 3 to derive the so-called forward kinematic equations of rigid manip-
ulators.

We begin by examining representations of points and vectors in a Euclidean
space equipped with multiple coordinate frames. Following this, we introduce
the concept of a rotation matrix to represent relative orientations among co-
ordinate frames. Then we combine these two concepts to build homogeneous
transformation matrices, which can be used to simultaneously represent the
position and orientation of one coordinate frame relative to another. Fur-
thermore, homogeneous transformation matrices can be used to perform co-
ordinate transformations. Such transformations allow us to represent various
quantities in different coordinate frames, a facility that we will often exploit
in subsequent chapters.

1Since we make extensive use of elementary matrix theory, the reader may wish to review
Appendix B before beginning this chapter.
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Fig. 2.1 Two coordinate frames, a point p, and two vectors v1 and v2.

2.1 REPRESENTING POSITIONS

Before developing representation schemes for points and vectors, it is instruc-
tive to distinguish between the two fundamental approaches to geometric rea-
soning: the synthetic approach and the analytic approach. In the former,
one reasons directly about geometric entities (e.g., points or lines), while in
the latter, one represents these entities using coordinates or equations, and
reasoning is performed via algebraic manipulations.

Consider Figure 2.1. This figure shows two coordinate frames that differ
in orientation by an angle of 45◦. Using the synthetic approach, without ever
assigning coordinates to points or vectors, one can say that x0 is perpendicular
to y0, or that v1 × v2 defines a vector that is perpendicular to the plane
containing v1 and v2, in this case pointing out of the page.

In robotics, one typically uses analytic reasoning, since robot tasks are often
defined using Cartesian coordinates. Of course, in order to assign coordinates
it is necessary to specify a coordinate frame. Consider again Figure 2.1. We
could specify the coordinates of the point p with respect to either frame o0x0y0
or frame o1x1y1. In the former case, we might assign to p the coordinate vector
(5, 6)T , and in the latter case (−2.8, 4.2)T . So that the reference frame will
always be clear, we will adopt a notation in which a superscript is used to
denote the reference frame. Thus, we would write

p0 =

[

5
6

]

, p1 =

[

−2.8
4.2

]

Geometrically, a point corresponds to a specific location in space. We
stress here that p is a geometric entity, a point in space, while both p0 and p1

are coordinate vectors that represent the location of this point in space with
respect to coordinate frames o0x0y0 and o1x1y1, respectively.



REPRESENTING POSITIONS 31

Since the origin of a coordinate system is just a point in space, we can
assign coordinates that represent the position of the origin of one coordinate
system with respect to another. In Figure 2.1, for example, we have

o01 =

[

10
5

]

, o10 =

[

−10.6
3.5

]

In cases where there is only a single coordinate frame, or in which the
reference frame is obvious, we will often omit the superscript. This is a slight
abuse of notation, and the reader is advised to bear in mind the difference
between the geometric entity called p and any particular coordinate vector
that is assigned to represent p. The former is independent of the choice
of coordinate systems, while the latter obviously depends on the choice of
coordinate frames.

While a point corresponds to a specific location in space, a vector specifies
a direction and a magnitude. Vectors can be used, for example, to represent
displacements or forces. Therefore, while the point p is not equivalent to
the vector v1, the displacement from the origin o0 to the point p is given
by the vector v1. In this text, we will use the term vector to refer to what
are sometimes called free vectors, i.e., vectors that are not constrained to be
located at a particular point in space. Under this convention, it is clear that
points and vectors are not equivalent, since points refer to specific locations
in space, but a vector can be moved to any location in space. Under this
convention, two vectors are equal if they have the same direction and the
same magnitude.

When assigning coordinates to vectors, we use the same notational con-
vention that we used when assigning coordinates to points. Thus, v1 and v2
are geometric entities that are invariant with respect to the choice of coordi-
nate systems, but the representation by coordinates of these vectors depends
directly on the choice of reference coordinate frame. In the example of Fig-
ure 2.1, we would obtain

v0
1 =

[

5
6

]

, v1
1 =

[

7.77
0.8

]

, v0
2 =

[

−5.1
1

]

, v1
2 =

[

−2.89
4.2

]

Coordinate Convention
In order to perform algebraic manipulations using coordinates, it is essential
that all coordinate vectors be defined with respect to the same coordinate frame.
In the case of free vectors, it is enough that they be defined with respect to
“parallel” coordinate frames, i.e. frames whose respective coordinate axes are
parallel, since only their magnitude and direction are specified and not their
absolute locations in space.

Using this convention, an expression of the form v1
1 + v2

2 , where v1
1 and v2

2

are as in Figure 2.1, is not defined since the frames o0x0y0 and o1x1y1 are not
parallel. Thus, we see a clear need, not only for a representation system that
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allows points to be expressed with respect to various coordinate systems, but
also for a mechanism that allows us to transform the coordinates of points that
are expressed in one coordinate system into the appropriate coordinates with
respect to some other coordinate frame. Such coordinate transformations and
their derivations are the topic for much of the remainder of this chapter.

2.2 REPRESENTING ROTATIONS

In order to represent the relative position and orientation of one rigid body
with respect to another, we will rigidly attach coordinate frames to each body,
and then specify the geometric relationships between these coordinate frames.
In Section 2.1 we saw how one can represent the position of the origin of one
frame with respect to another frame. In this section, we address the problem of
describing the orientation of one coordinate frame relative to another frame.
We begin with the case of rotations in the plane, and then generalize our
results to the case of orientations in a three dimensional space.

2.2.1 Rotation in the plane

Figure 2.2 shows two coordinate frames, with frame o1x1y1 being obtained
by rotating frame o0x0y0 by an angle θ. Perhaps the most obvious way to
represent the relative orientation of these two frames is to merely specify
the angle of rotation, θ. There are two immediate disadvantages to such a
representation. First, there is a discontinuity in the mapping from relative
orientation to the value of θ in a neighborhood of θ = 0. In particular, for
θ = 2π − ǫ, small changes in orientation can produce large changes in the
value of θ (i.e., a rotation by ǫ causes θ to “wrap around” to zero). Second,
this choice of representation does not scale well to the three dimensional case.

A slightly less obvious way to specify the orientation is to specify the coor-
dinate vectors for the axes of frame o1x1y1 with respect to coordinate frame
o0x0y0

2:
R0

1 =
[

x0
1|y0

1

]

where x0
1 and y0

1 are the coordinates in frame o0x0y0 of unit vectors x1 and
y1, respectively. A matrix in this form is called a rotation matrix. Rotation
matrices have a number of special properties that we will discuss below.

In the two dimensional case, it is straightforward to compute the entries of
this matrix. As illustrated in Figure 2.2,

x0
1 =

[

cos θ
sin θ

]

, y0
1 =

[

− sin θ
cos θ

]

2We will use x
i
, y

i
to denote both coordinate axes and unit vectors along the coordinate

axes depending on the context.
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o0, o1

y0

y1

θ

x1

sin θ

cos θ

x0

Fig. 2.2 Coordinate frame o1x1y1 is oriented at an angle θ with respect to o0x0y0.

which gives

R0
1 =

[

cos θ − sin θ
sin θ cos θ

]

(2.1)

Note that we have continued to use the notational convention of allowing
the superscript to denote the reference frame. Thus, R0

1 is a matrix whose
column vectors are the coordinates of the (unit vectors along the) axes of
frame o1x1y1 expressed relative to frame o0x0y0.

Although we have derived the entries for R0
1 in terms of the angle θ, it is not

necessary that we do so. An alternative approach, and one that scales nicely
to the three dimensional case, is to build the rotation matrix by projecting
the axes of frame o1x1y1 onto the coordinate axes of frame o0x0y0. Recalling
that the dot product of two unit vectors gives the projection of one onto the
other, we obtain

x0
1 =

[

x1 · x0

x1 · y0

]

, y0
1 =

[

y1 · x0

y1 · y0

]

which can be combined to obtain the rotation matrix

R0
1 =

[

x1 · x0 y1 · x0

x1 · y0 y1 · y0

]

Thus the columns of R0
1 specify the direction cosines of the coordinate axes

of o1x1y1 relative to the coordinate axes of o0x0y0. For example, the first
column (x1 · x0, x1 · y0)T of R0

1 specifies the direction of x1 relative to the
frame o0x0y0. Note that the right hand sides of these equations are defined in
terms of geometric entities, and not in terms of their coordinates. Examining
Figure 2.2 it can be seen that this method of defining the rotation matrix by
projection gives the same result as was obtained in Equation (2.1).
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Table 2.2.1: Properties of the Matrix Group SO(n)

• R ∈ SO(n)

• R−1 ∈ SO(n)

• R−1 = RT

• The columns (and therefore the rows) of R are mutually orthogonal

• Each column (and therefore each row) of R is a unit vector

• detR = 1

If we desired instead to describe the orientation of frame o0x0y0 with re-
spect to the frame o1x1y1 (i.e., if we desired to use the frame o1x1y1 as the
reference frame), we would construct a rotation matrix of the form

R1
0 =

[

x0 · x1 y0 · x1

x0 · y1 y0 · y1

]

Since the inner product is commutative, (i.e. xi · yj = yj · xi), we see that

R1
0 = (R0

1)
T

In a geometric sense, the orientation of o0x0y0 with respect to the frame
o1x1y1 is the inverse of the orientation of o1x1y1 with respect to the frame
o0x0y0. Algebraically, using the fact that coordinate axes are always mutually
orthogonal, it can readily be seen that

(R0
1)
T = (R0

1)
−1

The column vectors of R0
1 are of unit length and mutually orthogonal (Prob-

lem 2-4). Such a matrix is said to be orthogonal. It can also be shown
(Problem 2-5) that detR0

1 = ±1. If we restrict ourselves to right-handed co-
ordinate systems, as defined in Appendix B, then detR0

1 = +1 (Problem 2-5).
It is customary to refer to the set of all such n × n matrices by the symbol
SO(n), which denotes the Special Orthogonal group of order n. The
properties of such matrices are summarized in Table 2.2.1.

To provide further geometric intuition for the notion of the inverse of a
rotation matrix, note that in the two dimensional case, the inverse of the
rotation matrix corresponding to a rotation by angle θ can also be easily
computed simply by constructing the rotation matrix for a rotation by the
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angle −θ:
[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[

cos θ sin θ
− sin θ cos θ

]

=

[

cos θ − sin θ
sin θ cos θ

]T

2.2.2 Rotations in three dimensions

The projection technique described above scales nicely to the three dimen-
sional case. In three dimensions, each axis of the frame o1x1y1z1 is projected
onto coordinate frame o0x0y0z0. The resulting rotation matrix is given by

R0
1 =





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0





As was the case for rotation matrices in two dimensions, matrices in this
form are orthogonal, with determinant equal to 1. In this case, 3× 3 rotation
matrices belong to the group SO(3). The properties listed in Table 2.2.1 also
apply to rotation matrices in SO(3).

Example 2.1

y0

z0, z1

x0

y1

cos θ

sin θ
θ

cos θ

x1

sin θ

Fig. 2.3 Rotation about z0 by an angle θ.
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Suppose the frame o1x1y1z1 is rotated through an angle θ about the z0-axis,
and it is desired to find the resulting transformation matrix R0

1. Note that
by convention the positive sense for the angle θ is given by the right hand
rule; that is, a positive rotation by angle θ about the z-axis would advance a
right-hand threaded screw along the positive z-axis3. From Figure 2.3 we see
that

x1 · x0 = cos θ, y1 · x0 = − sin θ,

x1 · y0 = sin θ, y1 · y0 = cos θ

and

z0 · z1 = 1

while all other dot products are zero. Thus the rotation matrix R0
1 has a

particularly simple form in this case, namely

R0
1 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (2.2)

⋄

The Basic Rotation Matrices

The rotation matrix given in Equation (2.2) is called a basic rotation matrix
(about the z-axis). In this case we find it useful to use the more descriptive
notation Rz,θ instead of R0

1 to denote the matrix. It is easy to verify that the
basic rotation matrix Rz,θ has the properties

Rz,0 = I (2.3)

Rz,θRz,φ = Rz,θ+φ (2.4)

which together imply

(

Rz,θ
)−1

= Rz,−θ (2.5)

Similarly the basic rotation matrices representing rotations about the x
and y-axes are given as (Problem 2-8)

Rx,θ =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (2.6)

Ry,θ =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (2.7)

3See also Appendix B.
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which also satisfy properties analogous to Equations (2.3)-(2.5).

Example 2.2
Consider the frames o0x0y0z0 and o1x1y1z1 shown in Figure 2.4. Projecting

the unit vectors x1, y1, z1 onto x0, y0, z0 gives the coordinates of x1, y1, z1 in

the o0x0y0z0 frame. We see that the coordinates of x1 are
(

1√
2
, 0, 1√

2

)T

, the

coordinates of y1 are
(

1√
2
, 0, −1√

2

)T

and the coordinates of z1 are (0, 1, 0)T . The

rotation matrix R0
1 specifying the orientation of o1x1y1z1 relative to o0x0y0z0

has these as its column vectors, that is,

R0
1 =





1√
2

1√
2

0

0 0 1
1√
2

−1√
2

0



 (2.8)

z0

x1

y1

y0, z1

45◦x0

Fig. 2.4 Defining the relative orientation of two frames.

⋄

2.3 ROTATIONAL TRANSFORMATIONS

Figure 2.5 shows a rigid object S to which a coordinate frame o1x1y1z1 is
attached. Given the coordinates p1 of the point p (i.e., given the coordinates of
p with respect to the frame o1x1y1z1), we wish to determine the coordinates of
p relative to a fixed reference frame o0x0y0z0. The coordinates p1 = (u, v, w)T

satisfy the equation

p = ux1 + vy1 + wz1



38 RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

y1

z1

z0

x0

x1

o y0

S

p

Fig. 2.5 Coordinate frame attached to a rigid body.

In a similar way, we can obtain an expression for the coordinates p0 by pro-
jecting the point p onto the coordinate axes of the frame o0x0y0z0, giving

p0 =





p · x0

p · y0
p · z0





Combining these two equations we obtain

p0 =





(ux1 + vy1 + wz1) · x0

(ux1 + vy1 + wz1) · y0
(ux1 + vy1 + wz1) · z0





=





ux1 · x0 + vy1 · x0 + wz1 · x0

ux1 · y0 + vy1 · y0 + wz1 · y0
ux1 · z0 + vy1 · z0 + wz1 · z0





=





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0









u

v

w





But the matrix in this final equation is merely the rotation matrix R0
1, which

leads to
p0 = R0

1p
1 (2.9)

Thus, the rotation matrix R0
1 can be used not only to represent the ori-

entation of coordinate frame o1x1y1z1 with respect to frame o0x0y0z0, but
also to transform the coordinates of a point from one frame to another. If
a given point is expressed relative to o1x1y1z1 by coordinates p1, then R0

1p
1

represents the same point expressed relative to the frame o0x0y0z0.
We can also use rotation matrices to represent rigid motions that corre-

spond to pure rotation. Consider Figure 2.6. One corner of the block in
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z0

x0 x0

z0

pb

y0 y0

(a) (b)

pa

Fig. 2.6 The block in (b) is obtained by rotating the block in (a) by π about z0.

Figure 2.6(a) is located at the point pa in space. Figure 2.6(b) shows the
same block after it has been rotated about z0 by the angle π. In Figure
2.6(b), the same corner of the block is now located at point pb in space. It is
possible to derive the coordinates for pb given only the coordinates for pa and
the rotation matrix that corresponds to the rotation about z0. To see how this
can be accomplished, imagine that a coordinate frame is rigidly attached to
the block in Figure 2.6(a), such that it is coincident with the frame o0x0y0z0.
After the rotation by π, the block’s coordinate frame, which is rigidly attached
to the block, is also rotated by π. If we denote this rotated frame by o1x1y1z1,
we obtain

R0
1 = Rz,π =





−1 0 0
0 −1 0
0 0 1





In the local coordinate frame o1x1y1z1, the point pb has the coordinate rep-
resentation p1

b . To obtain its coordinates with respect to frame o0x0y0z0, we
merely apply the coordinate transformation Equation (2.9), giving

p0
b = Rz,πp

1
b

The key thing to notice is that the local coordinates, p1
b , of the corner of the

block do not change as the block rotates, since they are defined in terms of the
block’s own coordinate frame. Therefore, when the block’s frame is aligned
with the reference frame o0x0y0z0 (i.e., before the rotation is performed), the
coordinates p1

b = p0
a, since before the rotation is performed, the point pa is

coincident with the corner of the block. Therefore, we can substitute p0
a into

the previous equation to obtain

p0
b = Rz,πp

0
a
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y0

z0

x0

�v1

�v0

π

2

Fig. 2.7 Rotating a vector about axis y0.

This equation shows us how to use a rotation matrix to represent a rotational
motion. In particular, if the point pb is obtained by rotating the point pa as
defined by the rotation matrix R, then the coordinates of pb with respect to
the reference frame are given by

p0
b = Rp0

a

This same approach can be used to rotate vectors with respect to a coordinate
frame, as the following example illustrates.

Example 2.3
The vector v with coordinates v0 = (0, 1, 1)T is rotated about y0 by π

2
as

shown in Figure 2.7. The resulting vector v1 has coordinates given by

v0
1 = Ry,π

2

v0 (2.10)

=





0 0 1
0 1 0

−1 0 0









0
1
1



 =





1
1
0



 (2.11)

⋄
Thus, as we have now seen, a third interpretation of a rotation matrix R

is as an operator acting on vectors in a fixed frame. In other words, instead
of relating the coordinates of a fixed vector with respect to two different
coordinate frames, Equation (2.10) can represent the coordinates in o0x0y0z0
of a vector v1 that is obtained from a vector v by a given rotation.
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Summary
We have seen that a rotation matrix, either R ∈ SO(3) or R ∈ SO(2), can be
interpreted in three distinct ways:

1. It represents a coordinate transformation relating the coordinates of a
point p in two different frames.

2. It gives the orientation of a transformed coordinate frame with respect
to a fixed coordinate frame.

3. It is an operator taking a vector and rotating it to a new vector in the
same coordinate system.

The particular interpretation of a given rotation matrix R that is being
used must then be made clear by the context.

2.3.1 Similarity Transformations

A coordinate frame is defined by a set of basis vectors, for example, unit
vectors along the three coordinate axes. This means that a rotation matrix, as
a coordinate transformation, can also be viewed as defining a change of basis
from one frame to another. The matrix representation of a general linear
transformation is transformed from one frame to another using a so-called
similarity transformation4. For example, if A is the matrix representation
of a given linear transformation in o0x0y0z0 and B is the representation of
the same linear transformation in o1x1y1z1 then A and B are related as

B = (R0
1)

−1AR0
1 (2.12)

where R0
1 is the coordinate transformation between frames o1x1y1z1 and

o0x0y0z0. In particular, if A itself is a rotation, then so is B, and thus the
use of similarity transformations allows us to express the same rotation easily
with respect to different frames.

Example 2.4
Henceforth, whenever convenient we use the shorthand notation cθ = cos θ,

sθ = sin θ for trigonometric functions. Suppose frames o0x0y0z0 and o1x1y1z1
are related by the rotation

R0
1 =





0 0 1
0 1 0

−1 0 0





as shown in Figure 2.4. If A = Rz,θ relative to the frame o0x0y0z0, then,

4See Appendix B.
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y0

z0

x0

�v1

�v0

π

2

Fig. 2.8 Coordinate Frames for Example 2.4.

relative to frame o1x1y1z1 we have

B = (R0
1)

−1A0R0
1 =





1 0 0
0 cθ sθ
0 −sθ cθ





In other words, B is a rotation about the z0-axis but expressed relative to the
frame o1x1y1z1. This notion will be useful below and in later sections.
⋄

2.4 COMPOSITION OF ROTATIONS

In this section we discuss the composition of rotations. It is important for
subsequent chapters that the reader understand the material in this section
thoroughly before moving on.

2.4.1 Rotation with respect to the current frame

Recall that the matrix R0
1 in Equation (2.9) represents a rotational transfor-

mation between the frames o0x0y0z0 and o1x1y1z1. Suppose we now add a
third coordinate frame o2x2y2z2 related to the frames o0x0y0z0 and o1x1y1z1
by rotational transformations. A given point p can then be represented by
coordinates specified with respect to any of these three frames: p0, p1 and p2.

The relationship among these representations of p is

p0 = R0
1p

1 (2.13)

p1 = R1
2p

2 (2.14)

p0 = R0
2p

2 (2.15)
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z0

x0

y0, y1x1

y2

φ

+ =

z0

x0

z1

x1

φ

y1

x2

y2

x1

y0, y1

z1, z2z1, z2

x2

θθ

Fig. 2.9 Composition of rotations about current axes.

where each Rij is a rotation matrix. Substituting Equation (2.14) into Equa-
tion (2.13) results in

p0 = R0
1R

1
2p

2 (2.16)

Note that R0
1 and R0

2 represent rotations relative to the frame o0x0y0z0
while R1

2 represents a rotation relative to the frame o1x1y1z1. Comparing
Equations (2.15) and (2.16) we can immediately infer

R0
2 = R0

1R
1
2 (2.17)

Equation (2.17) is the composition law for rotational transformations. It
states that, in order to transform the coordinates of a point p from its rep-
resentation p2 in the frame o2x2y2z2 to its representation p0 in the frame
o0x0y0z0, we may first transform to its coordinates p1 in the frame o1x1y1z1
using R1

2 and then transform p1 to p0 using R0
1.

We may also interpret Equation (2.17) as follows. Suppose initially that all
three of the coordinate frames coincide. We first rotate the frame o2x2y2z2 rel-
ative to o0x0y0z0 according to the transformation R0

1. Then, with the frames
o1x1y1z1 and o2x2y2z2 coincident, we rotate o2x2y2z2 relative to o1x1y1z1 ac-
cording to the transformation R1

2. In each case we call the frame relative to
which the rotation occurs the current frame.

Example 2.5
Suppose a rotation matrix R represents a rotation of angle φ about the

current y-axis followed by a rotation of angle θ about the current z-axis. Refer
to Figure 2.9. Then the matrix R is given by

R = Ry,φRz,θ (2.18)

=





cφ 0 sφ
0 1 0

−sφ 0 cφ









cθ −sθ 0
sθ cθ 0
0 0 1





=





cφcθ −cφsθ sφ
sθ cθ 0

−sφcθ sφsθ cφ




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⋄
It is important to remember that the order in which a sequence of rotations

are carried out, and consequently the order in which the rotation matrices are
multiplied together, is crucial. The reason is that rotation, unlike position, is
not a vector quantity and so rotational transformations do not commute in
general.

Example 2.6
Suppose that the above rotations are performed in the reverse order, that

is, first a rotation about the current z-axis followed by a rotation about the
current y-axis. Then the resulting rotation matrix is given by

R′ = Rz,θRy,φ (2.19)

=





cθ −sφ 0
sθ cθ 0
0 0 1









cφ 0 sφ
0 1 0

−sφ 0 cφ





=





cθcφ −sθ cθsφ
sθcφ cθ sθsφ
−sφ 0 cφ





Comparing Equations (2.18) and (2.19) we see that R 6= R′.
⋄

2.4.2 Rotation with respect to the fixed frame

Many times it is desired to perform a sequence of rotations, each about a
given fixed coordinate frame, rather than about successive current frames. For
example we may wish to perform a rotation about x0 followed by a rotation
about y0 (and not y1!). We will refer to o0x0y0z0 as the fixed frame. In
this case the composition law given by Equation (2.17) is not valid. It turns
out that the correct composition law in this case is simply to multiply the
successive rotation matrices in the reverse order from that given by Equation
(2.17). Note that the rotations themselves are not performed in reverse order.
Rather they are performed about the fixed frame instead of about the current
frame.

To see why this is so, suppose we have two frames o0x0y0z0 and o1x1y1z1 re-
lated by the rotational transformation R0

1. If R ∈ SO(3) represents a rotation
relative to o0x0y0z0 we know from Section 2.3.1 that the representation for R
in the current frame o1x1y1z1 is given by (R0

1)
−1RR0

1. Therefore, applying
the composition law for rotations about the current axis yields

R0
2 = R0

1

[

(R0
1)

−1RR0
1

]

= RR0
1 (2.20)
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Fig. 2.10 Composition of rotations about fixed axes.

Example 2.7
Referring to Figure 2.10, suppose that a rotation matrix R represents a

rotation of angle φ about y0 followed by a rotation of angle θ about the fixed
z0.

The second rotation about the fixed axis is given by Ry,−φRz,θRy,φ, which is
the basic rotation about the z-axis expressed relative to the frame o1x1y1z1 us-
ing a similarity transformation. Therefore, the composition rule for rotational
transformations gives us

p0 = Ry,φp
1

= Ry,φ
[

Ry,−φRz,θRy,φ
]

p2 (2.21)

= Rz,θRy,φp
2

It is not necessary to remember the above derivation, only to note by comparing
Equation (2.21) with Equation (2.18) that we obtain the same basic rotation
matrices, but in the reverse order.
⋄
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Summary
We can summarize the rule of composition of rotational transformations by
the following recipe. Given a fixed frame o0x0y0z0 a current frame o1x1y1z1,
together with rotation matrix R0

1 relating them, if a third frame o2x2y2z2
is obtained by a rotation R performed relative to the current frame then
post-multiply R0

1 by R = R1
2 to obtain

R0
2 = R0

1R
1
2 (2.22)

If the second rotation is to be performed relative to the fixed frame then
it is both confusing and inappropriate to use the notation R1

2 to represent this
rotation. Therefore, if we represent the rotation by R, we premultiply R0

1

by R to obtain

R0
2 = RR0

1 (2.23)

In each case R0
2 represents the transformation between the frames o0x0y0z0

and o2x2y2z2. The frame o2x2y2z2 that results in Equation (2.22) will be
different from that resulting from Equation (2.23).

Using the above rule for composition of rotations, it is an easy matter to
determine the result of multiple sequential rotational transformations.

Example 2.8
Suppose R is defined by the following sequence of basic rotations in the

order specified:

1. A rotation of θ about the current x-axis

2. A rotation of φ about the current z-axis

3. A rotation of α about the fixed z-axis

4. A rotation of β about the current y-axis

5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin
with the first rotation Rx,θ and pre- or post-multiply as the case may be to
obtain

R = Rx,δRz,αRx,θRz,φRy,β (2.24)

⋄

2.5 PARAMETERIZATIONS OF ROTATIONS

The nine elements rij in a general rotational transformation R are not inde-
pendent quantities. Indeed a rigid body possesses at most three rotational
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Fig. 2.11 Euler angle representation.

degrees-of-freedom and thus at most three quantities are required to specify
its orientation. This can be easily seen by examining the constraints that
govern the matrices in SO(3):

∑

i

r2ij = 1, j ∈ {1, 2, 3} (2.25)

r1ir1j + r2ir2j + r3ir3j = 0, i 6= j (2.26)

Equation (2.25) follows from the fact the the columns of a rotation matrix
are unit vectors, and Equation (2.26) follows from the fact that columns of a
rotation matrix are mutually orthogonal. Together, these constraints define
six independent equations with nine unknowns, which implies that there are
three free variables.

In this section we derive three ways in which an arbitrary rotation can
be represented using only three independent quantities: the Euler Angle
representation, the roll-pitch-yaw representation, and the axis/angle rep-
resentation.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three indepen-
dent quantities is to use the so-called Euler Angles. Consider the fixed coor-
dinate frame o0x0y0z0 and the rotated frame o1x1y1z1 shown in Figure 2.11.
We can specify the orientation of the frame o1x1y1z1 relative to the frame
o0x0y0z0 by three angles (φ, θ, ψ), known as Euler Angles, and obtained by
three successive rotations as follows: First rotate about the z-axis by the angle
φ. Next rotate about the current y-axis by the angle θ. Finally rotate about
the current z-axis by the angle ψ. In Figure 2.11, frame oaxayaza represents
the new coordinate frame after the rotation by φ, frame obxbybzb represents
the new coordinate frame after the rotation by θ, and frame o1x1y1z1 repre-
sents the final frame, after the rotation by ψ. Frames oaxayaza and obxbybzb
are shown in the figure only to help you visualize the rotations.
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In terms of the basic rotation matrices the resulting rotational transforma-
tion R0

1 can be generated as the product

RZY Z = Rz,φRy,θRz,ψ

=





cφ −sφ 0
sφ cφ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ









cψ −sψ 0
sψ cψ 0
0 0 1





=





cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sθcψ sθsψ cθ



 (2.27)

The matrix RZY Z in Equation (2.27) is called the ZY Z-Euler Angle Trans-
formation.

The more important and more difficult problem is the following: Given a
matrix R ∈ SO(3)

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33





determine a set of Euler angles φ, θ, and ψ so that

R = RZY Z (2.28)

This problem will be important later when we address the inverse kinematics
problem for manipulators. In order to find a solution for this problem we
break it down into two cases.

First, suppose that not both of r13, r23 are zero. Then from Equation (2.28)
we deduce that sθ 6= 0, and hence that not both of r31, r32 are zero. If not both
r13 and r23 are zero, then r33 6= ±1, and we have cθ = r33, sθ = ±

√

1 − r233
so

θ = atan2

(

r33,

√

1 − r233

)

(2.29)

or

θ = atan2

(

r33,−
√

1 − r233

)

(2.30)

where the function atan2 is the two-argument arctangent function de-
fined in Appendix A.

If we choose the value for θ given by Equation (2.29), then sθ > 0, and

φ = atan2(r13, r23) (2.31)

ψ = atan2(−r31, r32) (2.32)

If we choose the value for θ given by Equation (2.30), then sθ < 0, and

φ = atan2(−r13,−r23) (2.33)

ψ = atan2(r31,−r32) (2.34)
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Thus there are two solutions depending on the sign chosen for θ.
If r13 = r23 = 0, then the fact that R is orthogonal implies that r33 = ±1,

and that r31 = r32 = 0. Thus R has the form

R =





r11 r12 0
r21 r22 0
0 0 ±1



 (2.35)

If r33 = 1, then cθ = 1 and sθ = 0, so that θ = 0. In this case Equation (2.27)
becomes





cφcψ − sφsψ −cφsψ − sφcψ 0
sφcψ + cφsψ −sφsψ + cφcψ 0

0 0 1



 =





cφ+ψ −sφ+ψ 0
sφ+ψ cφ+ψ 0

0 0 1





Thus the sum φ+ ψ can be determined as

φ+ ψ = atan2(r11, r21) (2.36)

= atan2(r11,−r12)

Since only the sum φ + ψ can be determined in this case there are infinitely
many solutions. In this case, we may take φ = 0 by convention. If r33 = −1,
then cθ = −1 and sθ = 0, so that θ = π. In this case Equation (2.27) becomes





−cφ−ψ −sφ−ψ 0
sφ−ψ cφ−ψ 0

0 0 −1



 =





r11 r12 0
r21 r22 0

0 0 −1



 (2.37)

The solution is thus

φ− ψ = atan2(−r11,−r12) (2.38)

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rotations
about the principal coordinate axes x0, y0, and z0 taken in a specific order.
These rotations define the roll, pitch, and yaw angles, which we shall also
denote φ, θ, ψ, and which are shown in Figure 2.12.

We specify the order of rotation as x − y − z, in other words, first a yaw
about x0 through an angle ψ, then pitch about the y0 by an angle θ, and
finally roll about the z0 by an angle φ5. Since the successive rotations are

5It should be noted that other conventions exist for naming the roll, pitch and yaw angles.
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Fig. 2.12 Roll, pitch, and yaw angles.

relative to the fixed frame, the resulting transformation matrix is given by

RXY Z = Rz,φRy,θRx,ψ

=





cφ −sφ 0
sφ cφ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ









1 0 0
0 cψ −sψ
0 sψ cψ





=





cφcθ −sφcψ + cφsθsψ sφsψ + cφsθcψ
sφcθ cφcψ + sφsθsψ −cφsψ + sφsθcψ
−sθ cθsψ cθcψ



 (2.39)

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also
interpret the above transformation as roll-pitch-yaw, in that order, each taken
with respect to the current frame. The end result is the same matrix as in
Equation (2.39).

The three angles, φ, θ, ψ, can be obtained for a given rotation matrix using
a method that is similar to that used to derive the Euler angles above. We
leave this as an exercise for the reader.

2.5.3 Axis/Angle Representation

Rotations are not always performed about the principal coordinate axes. We
are often interested in a rotation about an arbitrary axis in space. This
provides both a convenient way to describe rotations, and an alternative pa-
rameterization for rotation matrices. Let k = (kx, ky, kz)

T , expressed in the
frame o0x0y0z0, be a unit vector defining an axis. We wish to derive the
rotation matrix R

k,θ
representing a rotation of θ about this axis.

There are several ways in which the matrix R
k,θ

can be derived. Perhaps

the simplest way is to note that the axis define by the vector k is along the
z-axis following the rotational transformation R0

1 = Rz,αRy,β . Therefore, a
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rotation about the axis k can be computed using a similarity transformation
as

Rk,θ = R0
1Rz,θR

0
1

−1
(2.40)

= Rz,αRy,βRz,θRy,−βRz,−α (2.41)

β
θ

x0

y0

z0

kx

ky

kz

k

α

Fig. 2.13 Rotation about an arbitrary axis.

From Figure 2.13, we see that

sinα =
ky

√

k2
x + k2

y

(2.42)

cosα =
kx

√

k2
x + k2

y

(2.43)

sinβ =
√

k2
x + k2

y (2.44)

cosβ = kz (2.45)

Note that the final two equations follow from the fact that k is a unit vector.
Substituting Equations (2.42)-(2.45) into Equation (2.41) we obtain after some
lengthy calculation (Problem 2-17)

Rk,θ =





k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
zvθ + cθ



 (2.46)

where vθ = vers θ = 1 − cθ.
In fact, any rotation matrix R ∈ S0(3) can be represented by a single

rotation about a suitable axis in space by a suitable angle,

R = Rk,θ (2.47)
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where k is a unit vector defining the axis of rotation, and θ is the angle of
rotation about k. The matrix R

k,θ
given in Equation (2.47) is called the

axis/angle representation of R. Given an arbitrary rotation matrix R

with components rij , the equivalent angle θ and equivalent axis k are given
by the expressions

θ = cos−1

(

Tr(R) − 1

2

)

(2.48)

= cos−1

(

r11 + r22 + r33 − 1

2

)

where Tr denotes the trace of R, and

k =
1

2 sin θ





r32 − r23
r13 − r31
r21 − r12



 (2.49)

These equations can be obtained by direct manipulation of the entries of the
matrix given in Equation (2.46). The axis/angle representation is not unique
since a rotation of −θ about −k is the same as a rotation of θ about k, that
is,

Rk,θ = R
−k,−θ (2.50)

If θ = 0 then R is the identity matrix and the axis of rotation is undefined.

Example 2.9
Suppose R is generated by a rotation of 90◦ about z0 followed by a rotation

of 30◦ about y0 followed by a rotation of 60◦ about x0. Then

R = Rx,60Ry,30Rz,90 (2.51)

=







0 −
√

3

2

1

2
1

2
−

√
3

4
− 3

4√
3

2

1

4

√
3

4







We see that Tr(R) = 0 and hence the equivalent angle is given by Equation
(2.48) as

θ = cos−1

(

−1

2

)

= 120◦ (2.52)

The equivalent axis is given from Equation (2.49) as

k =

(

1√
3
,

1

2
√

3
− 1

2
,

1

2
√

3
+

1

2

)T

(2.53)

⋄
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The above axis/angle representation characterizes a given rotation by four
quantities, namely the three components of the equivalent axis k and the
equivalent angle θ. However, since the equivalent axis k is given as a unit
vector only two of its components are independent. The third is constrained
by the condition that k is of unit length. Therefore, only three independent
quantities are required in this representation of a rotationR. We can represent
the equivalent axis/angle by a single vector r as

r = (rx, ry, rz)
T = (θkx, θky, θkz)

T (2.54)

Note, since k is a unit vector, that the length of the vector r is the equivalent
angle θ and the direction of r is the equivalent axis k.

Remark 2.1 One should be careful not to interpret the representation in
Equation (2.54) to mean that two axis/angle representations may be combined
using standard rules of vector algebra as doing so would imply that rotations
commute which, as we have seen, in not true in general.

2.6 RIGID MOTIONS

We have seen how to represent both positions and orientations. We combine
these two concepts in this section to define a rigid motion and, in the next
section, we derive an efficient matrix representation for rigid motions using
the notion of homogeneous transformation.

Definition 2.1 A rigid motion is an ordered pair (d,R) where d ∈ R
3 and

R ∈ SO(3). The group of all rigid motions is known as the Special Eu-
clidean Group and is denoted by SE(3). We see then that SE(3) =
R

3 × SO(3).a

aThe definition of rigid motion is sometimes broadened to include reflections, which cor-
respond to detR = −1. We will always assume in this text that detR = +1, i.e. that
R ∈ SO(3).

A rigid motion is a pure translation together with a pure rotation. Referring
to Figure 2.14 we see that if frame o1x1y1z1 is obtained from frame o0x0y0z0
by first applying a rotation specified by R0

1 followed by a translation given
(with respect to o0x0y0z0) by d0

1, then the coordinates p0 are given by

p0 = R0
1p

1 + d0
1 (2.55)

Two points are worth noting in this figure. First, note that we cannot
simply add the vectors p0 and p1 since they are defined relative to frames
with different orientations, i.e. with respect to frames that are not parallel.
However, we are able to add the vectors p1 and R0

1p
1 precisely because multi-

plying p1 by the orientation matrix R0
1 expresses p1 in a frame that is parallel
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TO APPEAR

Fig. 2.14 Homogeneous transformations in two dimensions.

to frame o0x0y0z0. Second, it is not important in which order the rotation
and translation are performed.

If we have the two rigid motions

p0 = R0
1p

1 + d0
1 (2.56)

and

p1 = R1
2p

2 + d1
2 (2.57)

then their composition defines a third rigid motion, which we can describe by
substituting the expression for p1 from Equation (2.57) into Equation (2.56)

p0 = R0
1R

1
2p

2 +R0
1d

1
2 + d0

1 (2.58)

Since the relationship between p0 and p2 is also a rigid motion, we can equally
describe it as

p0 = R0
2p

2 + d0
2 (2.59)

Comparing Equations (2.58) and (2.59) we have the relationships

R0
2 = R0

1R
1
2 (2.60)

d0
2 = d0

1 +R0
1d

1
2 (2.61)

Equation (2.60) shows that the orientation transformations can simply be
multiplied together and Equation (2.61) shows that the vector from the origin
o0 to the origin o2 has coordinates given by the sum of d0

1 (the vector from
o0 to o1 expressed with respect to o0x0y0z0) and R0

1d
1
2 (the vector from o1 to

o2, expressed in the orientation of the coordinate system o0x0y0z0).

2.7 HOMOGENEOUS TRANSFORMATIONS

One can easily see that the calculation leading to Equation (2.58) would
quickly become intractable if a long sequence of rigid motions were considered.
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In this section we show how rigid motions can be represented in matrix form
so that composition of rigid motions can be reduced to matrix multiplication
as was the case for composition of rotations.

In fact, a comparison of Equations (2.60) and (2.61) with the matrix iden-
tity

[

R0
1 d0

1

0 1

] [

R1
2 d2

1

0 1

]

=

[

R0
1R

1
2 R0

1d
2
1 + d0

1

0 1

]

(2.62)

where 0 denotes the row vector (0, 0, 0), shows that the rigid motions can be
represented by the set of matrices of the form

H =

[

R d

0 1

]

;R ∈ SO(3), d ∈ R
3 (2.63)

Transformation matrices of the form given in Equation (2.63) are called
homogeneous transformations. A homogeneous transformation is there-
fore nothing more than a matrix representation of a rigid motion and we will
use SE(3) interchangeably to represent both the set of rigid motions and the
set of all 4 × 4 matrices H of the form given in Equation (2.63)

Using the fact that R is orthogonal it is an easy exercise to show that the
inverse transformation H−1 is given by

H−1 =

[

RT −RT d
0 1

]

(2.64)

In order to represent the transformation given in Equation (2.55) by a
matrix multiplication, we must augment the vectors p0 and p1 by the addition
of a fourth component of 1 as follows,

P 0 =

[

p0

1

]

(2.65)

P 1 =

[

p1

1

]

(2.66)

The vectors P 0 and P 1 are known as homogeneous representations of
the vectors p0 and p1, respectively. It can now be seen directly that the
transformation given in Equation (2.55) is equivalent to the (homogeneous)
matrix equation

P 0 = H0
1P

1 (2.67)

A set of basic homogeneous transformations generating SE(3) is given
by

Transx,a =









1 0 0 a

0 1 0 0
0 0 1 0
0 0 0 1









; Rotx,α =









1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1









(2.68)
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Transy,b =









1 0 0 0
0 1 0 b

0 0 1 0
0 0 0 1









; Roty,β =









cβ 0 sβ 0
0 1 0 0

−sβ 0 cβ 0
0 0 0 1









(2.69)

Transz,c =









1 0 0 0
0 1 0 0
0 0 1 c

0 0 0 1









; Rotx,γ =









cγ −sγ 0 0
sγ cγ 0 0
0 0 1 0
0 0 0 1









(2.70)

for translation and rotation about the x, y, z-axes, respectively.
The most general homogeneous transformation that we will consider may

be written now as

H0
1 =









nx sx ax dx
ny sy ay dy
nz sx az dz
0 0 0 1









=

[

n s a d

0 0 0 1

]

(2.71)

In the above equation n = (nx, ny, nz)
T is a vector representing the direction

of x1 in the o0x0y0z0 system, s = (sx, sy, sz)
T represents the direction of

y1, and a = (ax, ay, az)
T represents the direction of z1. The vector d =

(dx, dy, dz)
T represents the vector from the origin o0 to the origin o1 expressed

in the frame o0x0y0z0. The rationale behind the choice of letters n, s and a

is explained in Chapter 3.

Composition Rule for Homogeneous Transformations
The same interpretation regarding composition and ordering of transforma-
tions holds for 4×4 homogeneous transformations as for 3×3 rotations. Given
a homogeneous transformation H0

1 relating two frames, if a second rigid mo-
tion, represented by H ∈ SE(3) is performed relative to the current frame,
then

H0
2 = H0

1H

whereas if the second rigid motion is performed relative to the fixed frame,
then

H0
2 = HH0

1

Example 2.10
The homogeneous transformation matrix H that represents a rotation by

angle α about the current x-axis followed by a translation of b units along the
current x-axis, followed by a translation of d units along the current z-axis,
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followed by a rotation by angle θ about the current z-axis, is given by

H = Rotx,αTransx,bTransz,dRotz,θ

=









cθ −sθ 0 b

cαsθ cαcθ −sα −dsα
sαsθ sαcθ cα dcα

0 0 0 1









⋄
The homogeneous representation given in Equation (2.63) is a special case

of homogeneous coordinates, which have been extensively used in the field
of computer graphics. There, one is interested in scaling and/or perspective
transformations in addition to translation and rotation. The most general
homogeneous transformation takes the form

H =

[

R3×3 d3×1

f1×3 s1×1

]

=

[

Rotation Translation

perspective scale factor

]

(2.72)

For our purposes we always take the last row vector of H to be (0, 0, 0, 1),
although the more general form given by (2.72) could be useful, for example,
for interfacing a vision system into the overall robotic system or for graphic
simulation.

2.8 CHAPTER SUMMARY

In this chapter, we have seen how matrices in SE(n) can be used to represent
the relative position and orientation of two coordinate frames for n = 2, 3. We
have adopted a notional convention in which a superscript is used to indicate
a reference frame. Thus, the notation p0 represents the coordinates of the
point p relative to frame 0.

The relative orientation of two coordinate frames can be specified by a
rotation matrix, R ∈ SO(n), with n = 2, 3. In two dimensions, the orientation
of frame 1 with respect to frame 0 is given by

R0
1 =

[

x1 · x0 y1 · x0

x1 · y0 y1 · y0

]

=

[

cos θ − sin θ
sin θ cos θ

]

in which θ is the angle between the two coordinate frames. In the three
dimensional case, the rotation matrix is given by

R0
1 =





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0




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In each case, the columns of the rotation matrix are obtained by projecting
an axis of the target frame (in this case, frame 1) onto the coordinate axes of
the reference frame (in this case, frame 0).

The set of n×n rotation matrices is known as the special orthogonal group
of order n, and is denoted by SO(n). An important property of these matrices
is that R−1 = RT for any R ∈ SO(n).

Rotation matrices can be used to perform coordinate transformations be-
tween frames that differ only in orientation. We derived rules for the compo-
sition of rotational transformations as

R0
2 = R0

1R

for the case where the second transformation, R, is performed relative to the
current frame and

R0
2 = RR0

1

for the case where the second transformation, R, is performed relative to the
fixed frame.

In the three dimensional case, a rotation matrix can be parameterized
using three angles. A common convention is to use the Euler angles (φ, θ, ψ),
which correspond to successive rotations about the z, y and z axes. The
corresponding rotation matrix is given by

R(φ, θ, ψ) = Rz,φRy,θRz,ψ

Roll, pitch and yaw angles are similar, except that the successive rotations are
performed with respect to the fixed, world frame instead of being performed
with respect to the current frame.

Homogeneous transformations combine rotation and translation. In the
three dimensional case, a homogeneous transformation has the form

H =

[

R d

0 1

]

;R ∈ SO(3), d ∈ R
3

The set of all such matrices comprises the set SE(3), and these matrices
can be used to perform coordinate transformations, analogous to rotational
transformations using rotation matrices.

The interested reader can find deeper explanations of these concepts in a
variety of sources, including [4] [18] [29] [62] [54] [75].
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1. Using the fact that v1 · v2 = vT1 v2, show that the dot product of two
free vectors does not depend on the choice of frames in which their
coordinates are defined.

2. Show that the length of a free vector is not changed by rotation, i.e.,
that ‖v‖ = ‖Rv‖.

3. Show that the distance between points is not changed by rotation i.e.,
that ‖p1 − p2‖ = ‖Rp1 −Rp2‖.

4. If a matrix R satisfies RTR = I, show that the column vectors of R are
of unit length and mutually perpendicular.

5. If a matrix R satisfies RTR = I, then
a) show that detR = ±1
b) Show that detR = ±1 if we restrict ourselves to right-handed coor-
dinate systems.

6.

7. A group is a set X together with an operation ∗ defined on that set
such that

• x1 ∗ x2 ∈ X for all x1, x2 ∈ X

• (x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3)

• There exists an element I ∈ X such that I ∗ x = x ∗ I = x for all
x ∈ X.

• For every x ∈ X, there exists some element y ∈ X such that
x ∗ y = y ∗ x = I.

Show that SO(n) with the operation of matrix multiplication is a group.

Verify Equations (2.3)-(2.5).

8. Derive Equations (2.6) and (2.7).

9. Suppose A is a 2 × 2 rotation matrix. In other words ATA = I and
detA = 1. Show that there exists a unique θ such that A is of the form

A =

[

cos θ − sin θ
sin θ cos θ

]

10. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the current z-axis.

(c) Rotate by ψ about the world y-axis.
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Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

11. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the world z-axis.

(c) Rotate by ψ about the current x-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

12. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the current z-axis.

(c) Rotate by ψ about the current x-axis.

(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

13. Consider the following sequence of rotations:

(a) Rotate by φ about the world x-axis.

(b) Rotate by θ about the world z-axis.

(c) Rotate by ψ about the current x-axis.

(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

14. Find the rotation matrix representing a roll of π
4

followed by a yaw of
π
2

followed by a pitch of π
2
.

15. If the coordinate frame o1x1y1z1 is obtained from the coordinate frame
o0x0y0z0 by a rotation of π

2
about the x-axis followed by a rotation of

π
2

about the fixed y-axis, find the rotation matrix R representing the
composite transformation. Sketch the initial and final frames.

16. Suppose that three coordinate frames o1x1y1z1, o2x2y2z2 and o3x3y3z3
are given, and suppose

R1
2 =







1 0 0

0 1

2
−

√
3

2

0
√

3

2

1

2






;R1

3 =





0 0 −1
0 1 0
1 0 0




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Find the matrix R2
3.

17. Verify Equation (2.46).

18. If R is a rotation matrix show that +1 is an eigenvalue of R. Let k be
a unit eigenvector corresponding to the eigenvalue +1. Give a physical
interpretation of k.

19. Let k = 1√
3
(1, 1, 1)T , θ = 90◦. Find Rk,θ.

20. Show by direct calculation that Rk,θ given by Equation (2.46) is equal
to R given by Equation (2.51) if θ and k are given by Equations (2.52)
and (2.53), respectively.

21. Compute the rotation matrix given by the product

Rx,θRy,φRz,πRy,−φRx,−θ

22. Suppose R represents a rotation of 90◦ about y0 followed by a rotation
of 45◦ about z1. Find the equivalent axis/angle to represent R. Sketch
the initial and final frames and the equivalent axis vector k.

23. Find the rotation matrix corresponding to the set of Euler angles
{

π
2
, 0, π

4

}

.
What is the direction of the x1 axis relative to the base frame?

24. Section 2.5.1 described only the Z-Y-Z Euler angles. List all possible
sets of Euler angles. Is it possible to have Z-Z-Y Euler angles? Why or
why not?

25. Unit magnitude complex numbers (i.e., a + ib such that a2 + b2 = 1)
can be used to represent orientation in the plane. In particular, for the
complex number a + ib, we can define the angle θ = atan2(a, b). Show
that multiplication of two complex numbers corresponds to addition of
the corresponding angles.

26. Show that complex numbers together with the operation of complex
multiplication define a group. What is the identity for the group? What
is the inverse for a+ ib?

27. Complex numbers can be generalized by defining three independent
square roots for −1 that obey the multiplication rules

−1 = i2 = j2 = k2,

i = jk = −kj,
j = ki = −ik,
k = ij = −ji

Using these, we define a quaternion by Q = q0 + iq1 + jq2 +kq3, which
is typically represented by the 4-tuple (q0, q1, q2, q3). A rotation by θ
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about the unit vector n = (nx, ny, nz)
T can be represented by the unit

quaternion Q =
(

cos θ
2
, nx sin θ

2
, ny sin θ

2
, nz sin θ

2

)

. Show that such a
quaternion has unit norm, i.e., that q20 + q21 + q22 + q23 = 1.

28. Using Q =
(

cos θ
2
, nx sin θ

2
, ny sin θ

2
, nz sin θ

2

)

, and the results from Sec-
tion 2.5.3, determine the rotation matrix R that corresponds to the
rotation represented by the quaternion (q0, q1, q2, q3).

29. Determine the quaternion Q that represents the same rotation as given
by the rotation matrix R.

30. The quaternion Q = (q0, q1, q2, q3) can be thought of as having a scalar
component q0 and a vector component = (q1, q2, q3)

T . Show that the
product of two quaternions, Z = XY is given by

z0 = x0y0 − xT y

z = x0y + y0x+ x× y,

Hint: perform the multiplication (x0+ix1+jx2+kx3)(y0+iy1+jy2+ky3)
and simplify the result.

31. Show that QI = (1, 0, 0, 0) is the identity element for unit quaternion
multiplication, i.e., that QQI = QIQ = Q for any unit quaternion Q.

32. The conjugate Q∗ of the quaternion Q is defined as

Q∗ = (q0,−q1,−q2,−q3)

Show that Q∗ is the inverse of Q, i.e., that Q∗Q = QQ∗ = (1, 0, 0, 0).

33. Let v be a vector whose coordinates are given by (vx, vy, vz)
T . If the

quaternion Q represents a rotation, show that the new, rotated coor-
dinates of v are given by Q(0, vx, vy, vz)Q

∗, in which (0, vx, vy, vz) is a
quaternion with zero as its real component.

34. Let the point p be rigidly attached to the end effector coordinate frame
with local coordinates (x, y, z). If Q specifies the orientation of the end
effector frame with respect to the base frame, and T is the vector from
the base frame to the origin of the end effector frame, show that the
coordinates of p with respect to the base frame are given by

Q(0, x, y, z)Q∗ + T (2.73)

in which (0, x, y, z) is a quaternion with zero as its real component.

35. Compute the homogeneous transformation representing a translation of
3 units along the x-axis followed by a rotation of π

2
about the current

z-axis followed by a translation of 1 unit along the fixed y-axis. Sketch
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Fig. 2.15 Diagram for Problem 2-36.

the frame. What are the coordinates of the origin O1 with respect to
the original frame in each case?

36. Consider the diagram of Figure 2.15. Find the homogeneous transfor-
mations H0

1 ,H
0
2 ,H

1
2 representing the transformations among the three

frames shown. Show that H0
2 = H0

1 ,H
1
2 .

37. Consider the diagram of Figure 2.16. A robot is set up 1 meter from
a table. The table top is 1 meter high and 1 meter square. A frame
o1x1y1z1 is fixed to the edge of the table as shown. A cube measuring
20 cm on a side is placed in the center of the table with frame o2x2y2z2
established at the center of the cube as shown. A camera is situated
directly above the center of the block 2m above the table top with frame
o3x3y3z3 attached as shown. Find the homogeneous transformations
relating each of these frames to the base frame o0x0y0z0. Find the
homogeneous transformation relating the frame o2x2y2z2 to the camera
frame o3x3y3z3.

38. In Problem 37, suppose that, after the camera is calibrated, it is rotated
90◦ about z3. Recompute the above coordinate transformations.

39. If the block on the table is rotated 90◦ about z2 and moved so that its
center has coordinates (0, .8, .1)T relative to the frame o1x1y1z1, com-
pute the homogeneous transformation relating the block frame to the
camera frame; the block frame to the base frame.

40. Consult an astronomy book to learn the basic details of the Earth’s rota-
tion about the sun and about its own axis. Define for the Earth a local
coordinate frame whose z-axis is the Earth’s axis of rotation. Define
t = 0 to be the exact moment of the summer solstice, and the global
reference frame to be coincident with the Earth’s frame at time t = 0.
Give an expression R(t) for the rotation matrix that represents the in-
stantaneous orientation of the earth at time t. Determine as a function
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Fig. 2.16 Diagram for Problem 2-37.

of time the homogeneous transformation that specifies the Earth’s frame
with respect to the global reference frame.

41. In general, multiplication of homogeneous transformation matrices is
not commutative. Consider the matrix product

H = Rotx,αTransx,bTransz,dRotz,θ

Determine which pairs of the four matrices on the right hand side com-
mute. Explain why these pairs commute. Find all permutations of these
four matrices that yield the same homogeneous transformation matrix,
H .


