2

RIGID MOTIONS AND HOMOGENEOUS TRANSFORMATIONS

A large part of robot kinematics is concerned with the establishment of various coordinate systems to represent the positions and orientations of rigid objects, and with transformations among these coordinate systems. Indeed, the geometry of three-dimensional space and of rigid motions plays a central role in all aspects of robotic manipulation. In this chapter we study the operations of rotation and translation, and introduce the notion of homogeneous transformations. ${ }^{1}$ Homogeneous transformations combine the operations of rotation and translation into a single matrix multiplication, and are used in Chapter 3 to derive the so-called forward kinematic equations of rigid manipulators.

We begin by examining representations of points and vectors in a Euclidean space equipped with multiple coordinate frames. Following this, we introduce the concept of a rotation matrix to represent relative orientations among coordinate frames. Then we combine these two concepts to build homogeneous transformation matrices, which can be used to simultaneously represent the position and orientation of one coordinate frame relative to another. Furthermore, homogeneous transformation matrices can be used to perform coordinate transformations. Such transformations allow us to represent various quantities in different coordinate frames, a facility that we will often exploit in subsequent chapters.

[^0]

Fig. 2.1 Two coordinate frames, a point p, and two vectors v_{1} and v_{2}.

2.1 REPRESENTING POSITIONS

Before developing representation schemes for points and vectors, it is instructive to distinguish between the two fundamental approaches to geometric reasoning: the synthetic approach and the analytic approach. In the former, one reasons directly about geometric entities (e.g., points or lines), while in the latter, one represents these entities using coordinates or equations, and reasoning is performed via algebraic manipulations.

Consider Figure 2.1. This figure shows two coordinate frames that differ in orientation by an angle of 45°. Using the synthetic approach, without ever assigning coordinates to points or vectors, one can say that x_{0} is perpendicular to y_{0}, or that $v_{1} \times v_{2}$ defines a vector that is perpendicular to the plane containing v_{1} and v_{2}, in this case pointing out of the page.

In robotics, one typically uses analytic reasoning, since robot tasks are often defined using Cartesian coordinates. Of course, in order to assign coordinates it is necessary to specify a coordinate frame. Consider again Figure 2.1. We could specify the coordinates of the point p with respect to either frame $o_{0} x_{0} y_{0}$ or frame $o_{1} x_{1} y_{1}$. In the former case, we might assign to p the coordinate vector $(5,6)^{T}$, and in the latter case $(-2.8,4.2)^{T}$. So that the reference frame will always be clear, we will adopt a notation in which a superscript is used to denote the reference frame. Thus, we would write

$$
p^{0}=\left[\begin{array}{l}
5 \\
6
\end{array}\right], \quad p^{1}=\left[\begin{array}{r}
-2.8 \\
4.2
\end{array}\right]
$$

Geometrically, a point corresponds to a specific location in space. We stress here that p is a geometric entity, a point in space, while both p^{0} and p^{1} are coordinate vectors that represent the location of this point in space with respect to coordinate frames $o_{0} x_{0} y_{0}$ and $o_{1} x_{1} y_{1}$, respectively.

Since the origin of a coordinate system is just a point in space, we can assign coordinates that represent the position of the origin of one coordinate system with respect to another. In Figure 2.1, for example, we have

$$
o_{1}^{0}=\left[\begin{array}{r}
10 \\
5
\end{array}\right], \quad o_{0}^{1}=\left[\begin{array}{r}
-10.6 \\
3.5
\end{array}\right]
$$

In cases where there is only a single coordinate frame, or in which the reference frame is obvious, we will often omit the superscript. This is a slight abuse of notation, and the reader is advised to bear in mind the difference between the geometric entity called p and any particular coordinate vector that is assigned to represent p. The former is independent of the choice of coordinate systems, while the latter obviously depends on the choice of coordinate frames.

While a point corresponds to a specific location in space, a vector specifies a direction and a magnitude. Vectors can be used, for example, to represent displacements or forces. Therefore, while the point p is not equivalent to the vector v_{1}, the displacement from the origin o_{0} to the point p is given by the vector v_{1}. In this text, we will use the term vector to refer to what are sometimes called free vectors, i.e., vectors that are not constrained to be located at a particular point in space. Under this convention, it is clear that points and vectors are not equivalent, since points refer to specific locations in space, but a vector can be moved to any location in space. Under this convention, two vectors are equal if they have the same direction and the same magnitude.

When assigning coordinates to vectors, we use the same notational convention that we used when assigning coordinates to points. Thus, v_{1} and v_{2} are geometric entities that are invariant with respect to the choice of coordinate systems, but the representation by coordinates of these vectors depends directly on the choice of reference coordinate frame. In the example of Figure 2.1, we would obtain

$$
v_{1}^{0}=\left[\begin{array}{l}
5 \\
6
\end{array}\right], \quad v_{1}^{1}=\left[\begin{array}{r}
7.77 \\
0.8
\end{array}\right], \quad v_{2}^{0}=\left[\begin{array}{r}
-5.1 \\
1
\end{array}\right], \quad v_{2}^{1}=\left[\begin{array}{r}
-2.89 \\
4.2
\end{array}\right]
$$

Coordinate Convention

In order to perform algebraic manipulations using coordinates, it is essential that all coordinate vectors be defined with respect to the same coordinate frame. In the case of free vectors, it is enough that they be defined with respect to "parallel" coordinate frames, i.e. frames whose respective coordinate axes are parallel, since only their magnitude and direction are specified and not their absolute locations in space.

Using this convention, an expression of the form $v_{1}^{1}+v_{2}^{2}$, where v_{1}^{1} and v_{2}^{2} are as in Figure 2.1, is not defined since the frames $o_{0} x_{0} y_{0}$ and $o_{1} x_{1} y_{1}$ are not parallel. Thus, we see a clear need, not only for a representation system that
allows points to be expressed with respect to various coordinate systems, but also for a mechanism that allows us to transform the coordinates of points that are expressed in one coordinate system into the appropriate coordinates with respect to some other coordinate frame. Such coordinate transformations and their derivations are the topic for much of the remainder of this chapter.

2.2 REPRESENTING ROTATIONS

In order to represent the relative position and orientation of one rigid body with respect to another, we will rigidly attach coordinate frames to each body, and then specify the geometric relationships between these coordinate frames. In Section 2.1 we saw how one can represent the position of the origin of one frame with respect to another frame. In this section, we address the problem of describing the orientation of one coordinate frame relative to another frame. We begin with the case of rotations in the plane, and then generalize our results to the case of orientations in a three dimensional space.

2.2.1 Rotation in the plane

Figure 2.2 shows two coordinate frames, with frame $o_{1} x_{1} y_{1}$ being obtained by rotating frame $o_{0} x_{0} y_{0}$ by an angle θ. Perhaps the most obvious way to represent the relative orientation of these two frames is to merely specify the angle of rotation, θ. There are two immediate disadvantages to such a representation. First, there is a discontinuity in the mapping from relative orientation to the value of θ in a neighborhood of $\theta=0$. In particular, for $\theta=2 \pi-\epsilon$, small changes in orientation can produce large changes in the value of θ (i.e., a rotation by ϵ causes θ to "wrap around" to zero). Second, this choice of representation does not scale well to the three dimensional case.

A slightly less obvious way to specify the orientation is to specify the coordinate vectors for the axes of frame $o_{1} x_{1} y_{1}$ with respect to coordinate frame $o_{0} x_{0} y_{0}{ }^{2}$:

$$
R_{1}^{0}=\left[x_{1}^{0} \mid y_{1}^{0}\right]
$$

where x_{1}^{0} and y_{1}^{0} are the coordinates in frame $o_{0} x_{0} y_{0}$ of unit vectors x_{1} and y_{1}, respectively. A matrix in this form is called a rotation matrix. Rotation matrices have a number of special properties that we will discuss below.

In the two dimensional case, it is straightforward to compute the entries of this matrix. As illustrated in Figure 2.2,

$$
x_{1}^{0}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], \quad y_{1}^{0}=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

[^1]

Fig. 2.2 Coordinate frame $o_{1} x_{1} y_{1}$ is oriented at an angle θ with respect to $o_{0} x_{0} y_{0}$.
which gives

$$
R_{1}^{0}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \tag{2.1}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

Note that we have continued to use the notational convention of allowing the superscript to denote the reference frame. Thus, R_{1}^{0} is a matrix whose column vectors are the coordinates of the (unit vectors along the) axes of frame $o_{1} x_{1} y_{1}$ expressed relative to frame $o_{0} x_{0} y_{0}$.

Although we have derived the entries for R_{1}^{0} in terms of the angle θ, it is not necessary that we do so. An alternative approach, and one that scales nicely to the three dimensional case, is to build the rotation matrix by projecting the axes of frame $o_{1} x_{1} y_{1}$ onto the coordinate axes of frame $o_{0} x_{0} y_{0}$. Recalling that the dot product of two unit vectors gives the projection of one onto the other, we obtain

$$
x_{1}^{0}=\left[\begin{array}{c}
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0}
\end{array}\right], \quad y_{1}^{0}=\left[\begin{array}{c}
y_{1} \cdot x_{0} \\
y_{1} \cdot y_{0}
\end{array}\right]
$$

which can be combined to obtain the rotation matrix

$$
R_{1}^{0}=\left[\begin{array}{cc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]
$$

Thus the columns of R_{1}^{0} specify the direction cosines of the coordinate axes of $o_{1} x_{1} y_{1}$ relative to the coordinate axes of $o_{0} x_{0} y_{0}$. For example, the first column $\left(x_{1} \cdot x_{0}, x_{1} \cdot y_{0}\right)^{T}$ of R_{1}^{0} specifies the direction of x_{1} relative to the frame $o_{0} x_{0} y_{0}$. Note that the right hand sides of these equations are defined in terms of geometric entities, and not in terms of their coordinates. Examining Figure 2.2 it can be seen that this method of defining the rotation matrix by projection gives the same result as was obtained in Equation (2.1).

Table 2.2.1: Properties of the Matrix Group $S O(n)$

- $R \in S O(n)$
- $R^{-1} \in S O(n)$
- $R^{-1}=R^{T}$
- The columns (and therefore the rows) of R are mutually orthogonal
- Each column (and therefore each row) of R is a unit vector
- $\operatorname{det} R=1$

If we desired instead to describe the orientation of frame $o_{0} x_{0} y_{0}$ with respect to the frame $o_{1} x_{1} y_{1}$ (i.e., if we desired to use the frame $o_{1} x_{1} y_{1}$ as the reference frame), we would construct a rotation matrix of the form

$$
R_{0}^{1}=\left[\begin{array}{cc}
x_{0} \cdot x_{1} & y_{0} \cdot x_{1} \\
x_{0} \cdot y_{1} & y_{0} \cdot y_{1}
\end{array}\right]
$$

Since the inner product is commutative, (i.e. $x_{i} \cdot y_{j}=y_{j} \cdot x_{i}$), we see that

$$
R_{0}^{1}=\left(R_{1}^{0}\right)^{T}
$$

In a geometric sense, the orientation of $o_{0} x_{0} y_{0}$ with respect to the frame $o_{1} x_{1} y_{1}$ is the inverse of the orientation of $o_{1} x_{1} y_{1}$ with respect to the frame $o_{0} x_{0} y_{0}$. Algebraically, using the fact that coordinate axes are always mutually orthogonal, it can readily be seen that

$$
\left(R_{1}^{0}\right)^{T}=\left(R_{1}^{0}\right)^{-1}
$$

The column vectors of R_{1}^{0} are of unit length and mutually orthogonal (Problem 2-4). Such a matrix is said to be orthogonal. It can also be shown (Problem 2-5) that det $R_{1}^{0}= \pm 1$. If we restrict ourselves to right-handed coordinate systems, as defined in Appendix B, then $\operatorname{det} R_{1}^{0}=+1$ (Problem 2-5). It is customary to refer to the set of all such $n \times n$ matrices by the symbol $S O(n)$, which denotes the Special Orthogonal group of order n. The properties of such matrices are summarized in Table 2.2.1.

To provide further geometric intuition for the notion of the inverse of a rotation matrix, note that in the two dimensional case, the inverse of the rotation matrix corresponding to a rotation by angle θ can also be easily computed simply by constructing the rotation matrix for a rotation by the
angle $-\theta$:

$$
\begin{aligned}
{\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right] } & =\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{T}
\end{aligned}
$$

2.2.2 Rotations in three dimensions

The projection technique described above scales nicely to the three dimensional case. In three dimensions, each axis of the frame $o_{1} x_{1} y_{1} z_{1}$ is projected onto coordinate frame $o_{0} x_{0} y_{0} z_{0}$. The resulting rotation matrix is given by

$$
R_{1}^{0}=\left[\begin{array}{ccc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
$$

As was the case for rotation matrices in two dimensions, matrices in this form are orthogonal, with determinant equal to 1 . In this case, 3×3 rotation matrices belong to the group $S O(3)$. The properties listed in Table 2.2.1 also apply to rotation matrices in $S O(3)$.

Example 2.1

Fig. 2.3 Rotation about z_{0} by an angle θ.

Suppose the frame $o_{1} x_{1} y_{1} z_{1}$ is rotated through an angle θ about the z_{0}-axis, and it is desired to find the resulting transformation matrix R_{1}^{0}. Note that by convention the positive sense for the angle θ is given by the right hand rule; that is, a positive rotation by angle θ about the z-axis would advance a right-hand threaded screw along the positive z-axis ${ }^{3}$. From Figure 2.3 we see that

$$
\begin{aligned}
x_{1} \cdot x_{0}=\cos \theta, & y_{1} \cdot x_{0}=-\sin \theta, \\
x_{1} \cdot y_{0}=\sin \theta, & y_{1} \cdot y_{0}=\cos \theta
\end{aligned}
$$

and

$$
z_{0} \cdot z_{1}=1
$$

while all other dot products are zero. Thus the rotation matrix R_{1}^{0} has a particularly simple form in this case, namely

$$
R_{1}^{0}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{2.2}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

\diamond

The Basic Rotation Matrices

The rotation matrix given in Equation (2.2) is called a basic rotation matrix (about the z-axis). In this case we find it useful to use the more descriptive notation $R_{z, \theta}$ instead of R_{1}^{0} to denote the matrix. It is easy to verify that the basic rotation matrix $R_{z, \theta}$ has the properties

$$
\begin{align*}
R_{z, 0} & =I \tag{2.3}\\
R_{z, \theta} R_{z, \phi} & =R_{z, \theta+\phi} \tag{2.4}
\end{align*}
$$

which together imply

$$
\begin{equation*}
\left(R_{z, \theta}\right)^{-1}=R_{z,-\theta} \tag{2.5}
\end{equation*}
$$

Similarly the basic rotation matrices representing rotations about the x and y-axes are given as (Problem 2-8)

$$
\begin{align*}
& R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \tag{2.6}\\
& R_{y, \theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \tag{2.7}
\end{align*}
$$

[^2]which also satisfy properties analogous to Equations (2.3)-(2.5).

Example 2.2

Consider the frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{1} x_{1} y_{1} z_{1}$ shown in Figure 2.4. Projecting the unit vectors x_{1}, y_{1}, z_{1} onto x_{0}, y_{0}, z_{0} gives the coordinates of x_{1}, y_{1}, z_{1} in the $o_{0} x_{0} y_{0} z_{0}$ frame. We see that the coordinates of x_{1} are $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{T}$, the coordinates of y_{1} are $\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)^{T}$ and the coordinates of z_{1} are $(0,1,0)^{T}$. The rotation matrix R_{1}^{0} specifying the orientation of $o_{1} x_{1} y_{1} z_{1}$ relative to $o_{0} x_{0} y_{0} z_{0}$ has these as its column vectors, that is,

$$
R_{1}^{0}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \tag{2.8}\\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right]
$$

Fig. 2.4 Defining the relative orientation of two frames.
\diamond

2.3 ROTATIONAL TRANSFORMATIONS

Figure 2.5 shows a rigid object S to which a coordinate frame $o_{1} x_{1} y_{1} z_{1}$ is attached. Given the coordinates p^{1} of the point p (i.e., given the coordinates of p with respect to the frame $o_{1} x_{1} y_{1} z_{1}$), we wish to determine the coordinates of p relative to a fixed reference frame $o_{0} x_{0} y_{0} z_{0}$. The coordinates $p^{1}=(u, v, w)^{T}$ satisfy the equation

$$
p=u x_{1}+v y_{1}+w z_{1}
$$

Fig. 2.5 Coordinate frame attached to a rigid body.

In a similar way, we can obtain an expression for the coordinates p^{0} by projecting the point p onto the coordinate axes of the frame $o_{0} x_{0} y_{0} z_{0}$, giving

$$
p^{0}=\left[\begin{array}{c}
p \cdot x_{0} \\
p \cdot y_{0} \\
p \cdot z_{0}
\end{array}\right]
$$

Combining these two equations we obtain

$$
\begin{aligned}
p^{0} & =\left[\begin{array}{c}
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot x_{0} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot y_{0} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot z_{0}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
u x_{1} \cdot x_{0}+v y_{1} \cdot x_{0}+w z_{1} \cdot x_{0} \\
u x_{1} \cdot y_{0}+v y_{1} \cdot y_{0}+w z_{1} \cdot y_{0} \\
u x_{1} \cdot z_{0}+v y_{1} \cdot z_{0}+w z_{1} \cdot z_{0}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]
\end{aligned}
$$

But the matrix in this final equation is merely the rotation matrix R_{1}^{0}, which leads to

$$
\begin{equation*}
p^{0}=R_{1}^{0} p^{1} \tag{2.9}
\end{equation*}
$$

Thus, the rotation matrix R_{1}^{0} can be used not only to represent the orientation of coordinate frame $o_{1} x_{1} y_{1} z_{1}$ with respect to frame $o_{0} x_{0} y_{0} z_{0}$, but also to transform the coordinates of a point from one frame to another. If a given point is expressed relative to $o_{1} x_{1} y_{1} z_{1}$ by coordinates p^{1}, then $R_{1}^{0} p^{1}$ represents the same point expressed relative to the frame $o_{0} x_{0} y_{0} z_{0}$.

We can also use rotation matrices to represent rigid motions that correspond to pure rotation. Consider Figure 2.6. One corner of the block in

Fig. 2.6 The block in (b) is obtained by rotating the block in (a) by π about z_{0}.

Figure 2.6(a) is located at the point p_{a} in space. Figure 2.6(b) shows the same block after it has been rotated about z_{0} by the angle π. In Figure $2.6(\mathrm{~b})$, the same corner of the block is now located at point p_{b} in space. It is possible to derive the coordinates for p_{b} given only the coordinates for p_{a} and the rotation matrix that corresponds to the rotation about z_{0}. To see how this can be accomplished, imagine that a coordinate frame is rigidly attached to the block in Figure 2.6(a), such that it is coincident with the frame $o_{0} x_{0} y_{0} z_{0}$. After the rotation by π, the block's coordinate frame, which is rigidly attached to the block, is also rotated by π. If we denote this rotated frame by $o_{1} x_{1} y_{1} z_{1}$, we obtain

$$
R_{1}^{0}=R_{z, \pi}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In the local coordinate frame $o_{1} x_{1} y_{1} z_{1}$, the point p_{b} has the coordinate representation p_{b}^{1}. To obtain its coordinates with respect to frame $o_{0} x_{0} y_{0} z_{0}$, we merely apply the coordinate transformation Equation (2.9), giving

$$
p_{b}^{0}=R_{z, \pi} p_{b}^{1}
$$

The key thing to notice is that the local coordinates, p_{b}^{1}, of the corner of the block do not change as the block rotates, since they are defined in terms of the block's own coordinate frame. Therefore, when the block's frame is aligned with the reference frame $o_{0} x_{0} y_{0} z_{0}$ (i.e., before the rotation is performed), the coordinates $p_{b}^{1}=p_{a}^{0}$, since before the rotation is performed, the point p_{a} is coincident with the corner of the block. Therefore, we can substitute p_{a}^{0} into the previous equation to obtain

$$
p_{b}^{0}=R_{z, \pi} p_{a}^{0}
$$

Fig. 2.7 Rotating a vector about axis y_{0}.

This equation shows us how to use a rotation matrix to represent a rotational motion. In particular, if the point p_{b} is obtained by rotating the point p_{a} as defined by the rotation matrix R, then the coordinates of p_{b} with respect to the reference frame are given by

$$
p_{b}^{0}=R p_{a}^{0}
$$

This same approach can be used to rotate vectors with respect to a coordinate frame, as the following example illustrates.

Example 2.3

The vector v with coordinates $v^{0}=(0,1,1)^{T}$ is rotated about y_{0} by $\frac{\pi}{2}$ as shown in Figure 2.7. The resulting vector v_{1} has coordinates given by

$$
\begin{align*}
v_{1}^{0} & =R_{y, \frac{\pi}{2}} v^{0} \tag{2.10}\\
& =\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \tag{2.11}
\end{align*}
$$

\diamond
Thus, as we have now seen, a third interpretation of a rotation matrix R is as an operator acting on vectors in a fixed frame. In other words, instead of relating the coordinates of a fixed vector with respect to two different coordinate frames, Equation (2.10) can represent the coordinates in $o_{0} x_{0} y_{0} z_{0}$ of a vector v_{1} that is obtained from a vector v by a given rotation.

Summary

We have seen that a rotation matrix, either $R \in S O(3)$ or $R \in S O(2)$, can be interpreted in three distinct ways:

1. It represents a coordinate transformation relating the coordinates of a point p in two different frames.
2. It gives the orientation of a transformed coordinate frame with respect to a fixed coordinate frame.
3. It is an operator taking a vector and rotating it to a new vector in the same coordinate system.

The particular interpretation of a given rotation matrix R that is being used must then be made clear by the context.

2.3.1 Similarity Transformations

A coordinate frame is defined by a set of basis vectors, for example, unit vectors along the three coordinate axes. This means that a rotation matrix, as a coordinate transformation, can also be viewed as defining a change of basis from one frame to another. The matrix representation of a general linear transformation is transformed from one frame to another using a so-called similarity transformation ${ }^{4}$. For example, if A is the matrix representation of a given linear transformation in $o_{0} x_{0} y_{0} z_{0}$ and B is the representation of the same linear transformation in $o_{1} x_{1} y_{1} z_{1}$ then A and B are related as

$$
\begin{equation*}
B=\left(R_{1}^{0}\right)^{-1} A R_{1}^{0} \tag{2.12}
\end{equation*}
$$

where R_{1}^{0} is the coordinate transformation between frames $o_{1} x_{1} y_{1} z_{1}$ and $o_{0} x_{0} y_{0} z_{0}$. In particular, if A itself is a rotation, then so is B, and thus the use of similarity transformations allows us to express the same rotation easily with respect to different frames.

Example 2.4

Henceforth, whenever convenient we use the shorthand notation $c_{\theta}=\cos \theta$, $s_{\theta}=\sin \theta$ for trigonometric functions. Suppose frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{1} x_{1} y_{1} z_{1}$ are related by the rotation

$$
R_{1}^{0}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

as shown in Figure 2.4. If $A=R_{z, \theta}$ relative to the frame $o_{0} x_{0} y_{0} z_{0}$, then,

[^3]

Fig. 2.8 Coordinate Frames for Example 2.4.
relative to frame $o_{1} x_{1} y_{1} z_{1}$ we have

$$
B=\left(R_{1}^{0}\right)^{-1} A^{0} R_{1}^{0}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & c_{\theta} & s_{\theta} \\
0 & -s_{\theta} & c_{\theta}
\end{array}\right]
$$

In other words, B is a rotation about the z_{0}-axis but expressed relative to the frame $o_{1} x_{1} y_{1} z_{1}$. This notion will be useful below and in later sections. \diamond

2.4 COMPOSITION OF ROTATIONS

In this section we discuss the composition of rotations. It is important for subsequent chapters that the reader understand the material in this section thoroughly before moving on.

2.4.1 Rotation with respect to the current frame

Recall that the matrix R_{1}^{0} in Equation (2.9) represents a rotational transformation between the frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{1} x_{1} y_{1} z_{1}$. Suppose we now add a third coordinate frame $o_{2} x_{2} y_{2} z_{2}$ related to the frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{1} x_{1} y_{1} z_{1}$ by rotational transformations. A given point p can then be represented by coordinates specified with respect to any of these three frames: p^{0}, p^{1} and p^{2}. The relationship among these representations of p is

$$
\begin{align*}
p^{0} & =R_{1}^{0} p^{1} \tag{2.13}\\
p^{1} & =R_{2}^{1} p^{2} \tag{2.14}\\
p^{0} & =R_{2}^{0} p^{2} \tag{2.15}
\end{align*}
$$

Fig. 2.9 Composition of rotations about current axes.
where each R_{j}^{i} is a rotation matrix. Substituting Equation (2.14) into Equation (2.13) results in

$$
\begin{equation*}
p^{0}=R_{1}^{0} R_{2}^{1} p^{2} \tag{2.16}
\end{equation*}
$$

Note that R_{1}^{0} and R_{2}^{0} represent rotations relative to the frame $o_{0} x_{0} y_{0} z_{0}$ while R_{2}^{1} represents a rotation relative to the frame $o_{1} x_{1} y_{1} z_{1}$. Comparing Equations (2.15) and (2.16) we can immediately infer

$$
\begin{equation*}
R_{2}^{0}=R_{1}^{0} R_{2}^{1} \tag{2.17}
\end{equation*}
$$

Equation (2.17) is the composition law for rotational transformations. It states that, in order to transform the coordinates of a point p from its representation p^{2} in the frame $o_{2} x_{2} y_{2} z_{2}$ to its representation p^{0} in the frame $o_{0} x_{0} y_{0} z_{0}$, we may first transform to its coordinates p^{1} in the frame $o_{1} x_{1} y_{1} z_{1}$ using R_{2}^{1} and then transform p^{1} to p^{0} using R_{1}^{0}.

We may also interpret Equation (2.17) as follows. Suppose initially that all three of the coordinate frames coincide. We first rotate the frame $o_{2} x_{2} y_{2} z_{2}$ relative to $o_{0} x_{0} y_{0} z_{0}$ according to the transformation R_{1}^{0}. Then, with the frames $o_{1} x_{1} y_{1} z_{1}$ and $o_{2} x_{2} y_{2} z_{2}$ coincident, we rotate $o_{2} x_{2} y_{2} z_{2}$ relative to $o_{1} x_{1} y_{1} z_{1}$ according to the transformation R_{2}^{1}. In each case we call the frame relative to which the rotation occurs the current frame.

Example 2.5

Suppose a rotation matrix R represents a rotation of angle ϕ about the current y-axis followed by a rotation of angle θ about the current z-axis. Refer to Figure 2.9. Then the matrix R is given by

$$
\begin{align*}
R & =R_{y, \phi} R_{z, \theta} \tag{2.18}\\
& =\left[\begin{array}{ccc}
c_{\phi} & 0 & s_{\phi} \\
0 & 1 & 0 \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & -s_{\theta} & 0 \\
s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -c_{\phi} s_{\theta} & s_{\phi} \\
s_{\theta} & c_{\theta} & 0 \\
-s_{\phi} c_{\theta} & s_{\phi} s_{\theta} & c_{\phi}
\end{array}\right]
\end{align*}
$$

It is important to remember that the order in which a sequence of rotations are carried out, and consequently the order in which the rotation matrices are multiplied together, is crucial. The reason is that rotation, unlike position, is not a vector quantity and so rotational transformations do not commute in general.

Example 2.6

Suppose that the above rotations are performed in the reverse order, that is, first a rotation about the current z-axis followed by a rotation about the current y-axis. Then the resulting rotation matrix is given by

$$
\begin{align*}
R^{\prime} & =R_{z, \theta} R_{y, \phi} \tag{2.19}\\
& =\left[\begin{array}{ccc}
c_{\theta} & -s_{\phi} & 0 \\
s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\phi} & 0 & s_{\phi} \\
0 & 1 & 0 \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\phi} & -s_{\theta} & c_{\theta} s_{\phi} \\
s_{\theta} c_{\phi} & c_{\theta} & s_{\theta} s_{\phi} \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right]
\end{align*}
$$

Comparing Equations (2.18) and (2.19) we see that $R \neq R^{\prime}$.
\diamond

2.4.2 Rotation with respect to the fixed frame

Many times it is desired to perform a sequence of rotations, each about a given fixed coordinate frame, rather than about successive current frames. For example we may wish to perform a rotation about x_{0} followed by a rotation about y_{0} (and not $y_{1}!$). We will refer to $o_{0} x_{0} y_{0} z_{0}$ as the fixed frame. In this case the composition law given by Equation (2.17) is not valid. It turns out that the correct composition law in this case is simply to multiply the successive rotation matrices in the reverse order from that given by Equation (2.17). Note that the rotations themselves are not performed in reverse order. Rather they are performed about the fixed frame instead of about the current frame.

To see why this is so, suppose we have two frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{1} x_{1} y_{1} z_{1}$ related by the rotational transformation R_{1}^{0}. If $R \in S O(3)$ represents a rotation relative to $o_{0} x_{0} y_{0} z_{0}$ we know from Section 2.3.1 that the representation for R in the current frame $o_{1} x_{1} y_{1} z_{1}$ is given by $\left(R_{1}^{0}\right)^{-1} R R_{1}^{0}$. Therefore, applying the composition law for rotations about the current axis yields

$$
\begin{equation*}
R_{2}^{0}=R_{1}^{0}\left[\left(R_{1}^{0}\right)^{-1} R R_{1}^{0}\right]=R R_{1}^{0} \tag{2.20}
\end{equation*}
$$

Fig. 2.10 Composition of rotations about fixed axes.

Example 2.7

Referring to Figure 2.10, suppose that a rotation matrix R represents a rotation of angle ϕ about y_{0} followed by a rotation of angle θ about the fixed z_{0}.

The second rotation about the fixed axis is given by $R_{y,-\phi} R_{z, \theta} R_{y, \phi}$, which is the basic rotation about the z-axis expressed relative to the frame $o_{1} x_{1} y_{1} z_{1}$ using a similarity transformation. Therefore, the composition rule for rotational transformations gives us

$$
\begin{align*}
p^{0} & =R_{y, \phi} p^{1} \\
& =R_{y, \phi}\left[R_{y,-\phi} R_{z, \theta} R_{y, \phi}\right] p^{2} \tag{2.21}\\
& =R_{z, \theta} R_{y, \phi} p^{2}
\end{align*}
$$

It is not necessary to remember the above derivation, only to note by comparing Equation (2.21) with Equation (2.18) that we obtain the same basic rotation matrices, but in the reverse order.

Summary

We can summarize the rule of composition of rotational transformations by the following recipe. Given a fixed frame $o_{0} x_{0} y_{0} z_{0}$ a current frame $o_{1} x_{1} y_{1} z_{1}$, together with rotation matrix R_{1}^{0} relating them, if a third frame $o_{2} x_{2} y_{2} z_{2}$ is obtained by a rotation R performed relative to the current frame then post-multiply R_{1}^{0} by $R=R_{2}^{1}$ to obtain

$$
\begin{equation*}
R_{2}^{0}=R_{1}^{0} R_{2}^{1} \tag{2.22}
\end{equation*}
$$

If the second rotation is to be performed relative to the fixed frame then it is both confusing and inappropriate to use the notation R_{2}^{1} to represent this rotation. Therefore, if we represent the rotation by R, we premultiply R_{1}^{0} by R to obtain

$$
\begin{equation*}
R_{2}^{0}=R R_{1}^{0} \tag{2.23}
\end{equation*}
$$

In each case R_{2}^{0} represents the transformation between the frames $o_{0} x_{0} y_{0} z_{0}$ and $o_{2} x_{2} y_{2} z_{2}$. The frame $o_{2} x_{2} y_{2} z_{2}$ that results in Equation (2.22) will be different from that resulting from Equation (2.23).

Using the above rule for composition of rotations, it is an easy matter to determine the result of multiple sequential rotational transformations.

Example 2.8

Suppose R is defined by the following sequence of basic rotations in the order specified:

1. A rotation of θ about the current x-axis
2. A rotation of ϕ about the current z-axis
3. A rotation of α about the fixed z-axis
4. A rotation of β about the current y-axis
5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin with the first rotation $R_{x, \theta}$ and pre- or post-multiply as the case may be to obtain

$$
\begin{equation*}
R=R_{x, \delta} R_{z, \alpha} R_{x, \theta} R_{z, \phi} R_{y, \beta} \tag{2.24}
\end{equation*}
$$

\diamond

2.5 PARAMETERIZATIONS OF ROTATIONS

The nine elements $r_{i j}$ in a general rotational transformation R are not independent quantities. Indeed a rigid body possesses at most three rotational

Fig. 2.11 Euler angle representation.
degrees-of-freedom and thus at most three quantities are required to specify its orientation. This can be easily seen by examining the constraints that govern the matrices in $S O(3)$:

$$
\begin{align*}
\sum_{i} r_{i j}^{2} & =1, \quad j \in\{1,2,3\} \tag{2.25}\\
r_{1 i} r_{1 j}+r_{2 i} r_{2 j}+r_{3 i} r_{3 j} & =0, \quad i \neq j \tag{2.26}
\end{align*}
$$

Equation (2.25) follows from the fact the the columns of a rotation matrix are unit vectors, and Equation (2.26) follows from the fact that columns of a rotation matrix are mutually orthogonal. Together, these constraints define six independent equations with nine unknowns, which implies that there are three free variables.

In this section we derive three ways in which an arbitrary rotation can be represented using only three independent quantities: the Euler Angle representation, the roll-pitch-yaw representation, and the axis/angle representation.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three independent quantities is to use the so-called Euler Angles. Consider the fixed coordinate frame $o_{0} x_{0} y_{0} z_{0}$ and the rotated frame $o_{1} x_{1} y_{1} z_{1}$ shown in Figure 2.11. We can specify the orientation of the frame $o_{1} x_{1} y_{1} z_{1}$ relative to the frame $o_{0} x_{0} y_{0} z_{0}$ by three angles (ϕ, θ, ψ), known as Euler Angles, and obtained by three successive rotations as follows: First rotate about the z-axis by the angle ϕ. Next rotate about the current y-axis by the angle θ. Finally rotate about the current z-axis by the angle ψ. In Figure 2.11, frame $o_{a} x_{a} y_{a} z_{a}$ represents the new coordinate frame after the rotation by ϕ, frame $o_{b} x_{b} y_{b} z_{b}$ represents the new coordinate frame after the rotation by θ, and frame $o_{1} x_{1} y_{1} z_{1}$ represents the final frame, after the rotation by ψ. Frames $o_{a} x_{a} y_{a} z_{a}$ and $o_{b} x_{b} y_{b} z_{b}$ are shown in the figure only to help you visualize the rotations.

In terms of the basic rotation matrices the resulting rotational transformation R_{1}^{0} can be generated as the product

$$
\begin{align*}
R_{Z Y Z} & =R_{z, \phi} R_{y, \theta} R_{z, \psi} \\
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right] \tag{2.27}
\end{align*}
$$

The matrix $R_{Z Y Z}$ in Equation (2.27) is called the $Z Y Z$-Euler Angle Transformation.

The more important and more difficult problem is the following: Given a matrix $R \in S O(3)$

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

determine a set of Euler angles ϕ, θ, and ψ so that

$$
\begin{equation*}
R=R_{Z Y Z} \tag{2.28}
\end{equation*}
$$

This problem will be important later when we address the inverse kinematics problem for manipulators. In order to find a solution for this problem we break it down into two cases.

First, suppose that not both of r_{13}, r_{23} are zero. Then from Equation (2.28) we deduce that $s_{\theta} \neq 0$, and hence that not both of r_{31}, r_{32} are zero. If not both r_{13} and r_{23} are zero, then $r_{33} \neq \pm 1$, and we have $c_{\theta}=r_{33}, s_{\theta}= \pm \sqrt{1-r_{33}^{2}}$ so

$$
\begin{equation*}
\theta=\operatorname{atan} 2\left(r_{33}, \sqrt{1-r_{33}^{2}}\right) \tag{2.29}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta=\operatorname{atan} 2\left(r_{33},-\sqrt{1-r_{33}^{2}}\right) \tag{2.30}
\end{equation*}
$$

where the function atan2 is the two-argument arctangent function defined in Appendix A.

If we choose the value for θ given by Equation (2.29), then $s_{\theta}>0$, and

$$
\begin{align*}
\phi & =\operatorname{atan} 2\left(r_{13}, r_{23}\right) \tag{2.31}\\
\psi & =\operatorname{atan} 2\left(-r_{31}, r_{32}\right) \tag{2.32}
\end{align*}
$$

If we choose the value for θ given by Equation (2.30), then $s_{\theta}<0$, and

$$
\begin{align*}
\phi & =\operatorname{atan} 2\left(-r_{13},-r_{23}\right) \tag{2.33}\\
\psi & =\operatorname{atan} 2\left(r_{31},-r_{32}\right) \tag{2.34}
\end{align*}
$$

Thus there are two solutions depending on the sign chosen for θ.
If $r_{13}=r_{23}=0$, then the fact that R is orthogonal implies that $r_{33}= \pm 1$, and that $r_{31}=r_{32}=0$. Thus R has the form

$$
R=\left[\begin{array}{ccc}
r_{11} & r_{12} & 0 \tag{2.35}\\
r_{21} & r_{22} & 0 \\
0 & 0 & \pm 1
\end{array}\right]
$$

If $r_{33}=1$, then $c_{\theta}=1$ and $s_{\theta}=0$, so that $\theta=0$. In this case Equation (2.27) becomes

$$
\left[\begin{array}{ccc}
c_{\phi} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} s_{\psi}-s_{\phi} c_{\psi} & 0 \\
s_{\phi} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} s_{\psi}+c_{\phi} c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
c_{\phi+\psi} & -s_{\phi+\psi} & 0 \\
s_{\phi+\psi} & c_{\phi+\psi} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus the sum $\phi+\psi$ can be determined as

$$
\begin{align*}
\phi+\psi & =\operatorname{atan} 2\left(r_{11}, r_{21}\right) \tag{2.36}\\
& =\operatorname{atan} 2\left(r_{11},-r_{12}\right)
\end{align*}
$$

Since only the sum $\phi+\psi$ can be determined in this case there are infinitely many solutions. In this case, we may take $\phi=0$ by convention. If $r_{33}=-1$, then $c_{\theta}=-1$ and $s_{\theta}=0$, so that $\theta=\pi$. In this case Equation (2.27) becomes

$$
\left[\begin{array}{rrr}
-c_{\phi-\psi} & -s_{\phi-\psi} & 0 \tag{2.37}\\
s_{\phi-\psi} & c_{\phi-\psi} & 0 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{rrr}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & -1
\end{array}\right]
$$

The solution is thus

$$
\begin{equation*}
\phi-\psi=\operatorname{atan} 2\left(-r_{11},-r_{12}\right) \tag{2.38}
\end{equation*}
$$

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rotations about the principal coordinate axes x_{0}, y_{0}, and z_{0} taken in a specific order. These rotations define the roll, pitch, and yaw angles, which we shall also denote ϕ, θ, ψ, and which are shown in Figure 2.12.

We specify the order of rotation as $x-y-z$, in other words, first a yaw about x_{0} through an angle ψ, then pitch about the y_{0} by an angle θ, and finally roll about the z_{0} by an angle ϕ^{5}. Since the successive rotations are

[^4]

Fig. 2.12 Roll, pitch, and yaw angles.
relative to the fixed frame, the resulting transformation matrix is given by

$$
\begin{align*}
R_{X Y Z} & =R_{z, \phi} R_{y, \theta} R_{x, \psi} \\
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\psi} & -s_{\psi} \\
0 & s_{\psi} & c_{\psi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -s_{\phi} c_{\psi}+c_{\phi} s_{\theta} s_{\psi} & s_{\phi} s_{\psi}+c_{\phi} s_{\theta} c_{\psi} \\
s_{\phi} c_{\theta} & c_{\phi} c_{\psi}+s_{\phi} s_{\theta} s_{\psi} & -c_{\phi} s_{\psi}+s_{\phi} s_{\theta} c_{\psi} \\
-s_{\theta} & c_{\theta} s_{\psi} & c_{\theta} c_{\psi}
\end{array}\right] \tag{2.39}
\end{align*}
$$

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also interpret the above transformation as roll-pitch-yaw, in that order, each taken with respect to the current frame. The end result is the same matrix as in Equation (2.39).

The three angles, ϕ, θ, ψ, can be obtained for a given rotation matrix using a method that is similar to that used to derive the Euler angles above. We leave this as an exercise for the reader.

2.5.3 Axis/Angle Representation

Rotations are not always performed about the principal coordinate axes. We are often interested in a rotation about an arbitrary axis in space. This provides both a convenient way to describe rotations, and an alternative parameterization for rotation matrices. Let $k=\left(k_{x}, k_{y}, k_{z}\right)^{T}$, expressed in the frame $o_{0} x_{0} y_{0} z_{0}$, be a unit vector defining an axis. We wish to derive the rotation matrix $R_{k, \theta}$ representing a rotation of θ about this axis.

There are several ways in which the matrix $R_{k, \theta}$ can be derived. Perhaps the simplest way is to note that the axis define by the vector k is along the z-axis following the rotational transformation $R_{1}^{0}=R_{z, \alpha} R_{y, \beta}$. Therefore, a
rotation about the axis k can be computed using a similarity transformation as

$$
\begin{align*}
R_{k, \theta} & =R_{1}^{0} R_{z, \theta} R_{1}^{0-1} \tag{2.40}\\
& =R_{z, \alpha} R_{y, \beta} R_{z, \theta} R_{y,-\beta} R_{z,-\alpha} \tag{2.41}
\end{align*}
$$

Fig. 2.13 Rotation about an arbitrary axis.
From Figure 2.13, we see that

$$
\begin{align*}
\sin \alpha & =\frac{k_{y}}{\sqrt{k_{x}^{2}+k_{y}^{2}}} \tag{2.42}\\
\cos \alpha & =\frac{k_{x}}{\sqrt{k_{x}^{2}+k_{y}^{2}}} \tag{2.43}\\
\sin \beta & =\sqrt{k_{x}^{2}+k_{y}^{2}} \tag{2.44}\\
\cos \beta & =k_{z} \tag{2.45}
\end{align*}
$$

Note that the final two equations follow from the fact that k is a unit vector. Substituting Equations (2.42)-(2.45) into Equation (2.41) we obtain after some lengthy calculation (Problem 2-17)

$$
R_{k, \theta}=\left[\begin{array}{c|c|c}
k_{x}^{2} v_{\theta}+c_{\theta} & k_{x} k_{y} v_{\theta}-k_{z} s_{\theta} & k_{x} k_{z} v_{\theta}+k_{y} s_{\theta} \tag{2.46}\\
k_{x} k_{y} v_{\theta}+k_{z} s_{\theta} & k_{y}^{2} v_{\theta}+c_{\theta} & k_{y} k_{z} v_{\theta}-k_{x} s_{\theta} \\
k_{x} k_{z} v_{\theta}-k_{y} s_{\theta} & k_{y} k_{z} v_{\theta}+k_{x} s_{\theta} & k_{z}^{2} v_{\theta}+c_{\theta}
\end{array}\right]
$$

where $v_{\theta}=$ vers $\theta=1-c_{\theta}$.
In fact, any rotation matrix $R \in S 0(3)$ can be represented by a single rotation about a suitable axis in space by a suitable angle,

$$
\begin{equation*}
R=R_{k, \theta} \tag{2.47}
\end{equation*}
$$

where k is a unit vector defining the axis of rotation, and θ is the angle of rotation about k. The matrix $R_{k, \theta}$ given in Equation (2.47) is called the axis/angle representation of R. Given an arbitrary rotation matrix R with components $r_{i j}$, the equivalent angle θ and equivalent axis k are given by the expressions

$$
\begin{align*}
\theta & =\cos ^{-1}\left(\frac{\operatorname{Tr}(R)-1}{2}\right) \tag{2.48}\\
& =\cos ^{-1}\left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right)
\end{align*}
$$

where Tr denotes the trace of R, and

$$
k=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
r_{32}-r_{23} \tag{2.49}\\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

These equations can be obtained by direct manipulation of the entries of the matrix given in Equation (2.46). The axis/angle representation is not unique since a rotation of $-\theta$ about $-k$ is the same as a rotation of θ about k, that is,

$$
\begin{equation*}
R_{k, \theta}=R_{-k,-\theta} \tag{2.50}
\end{equation*}
$$

If $\theta=0$ then R is the identity matrix and the axis of rotation is undefined.

Example 2.9

Suppose R is generated by a rotation of 90° about z_{0} followed by a rotation of 30° about y_{0} followed by a rotation of 60° about x_{0}. Then

$$
\begin{align*}
R & =R_{x, 60} R_{y, 30} R_{z, 90} \tag{2.51}\\
& =\left[\begin{array}{ccc}
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{\sqrt{3}}{4} & -\frac{3}{4} \\
\frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{\sqrt{3}}{4}
\end{array}\right]
\end{align*}
$$

We see that $\operatorname{Tr}(R)=0$ and hence the equivalent angle is given by Equation (2.48) as

$$
\begin{equation*}
\theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \tag{2.52}
\end{equation*}
$$

The equivalent axis is given from Equation (2.49) as

$$
\begin{equation*}
k=\left(\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{3}}-\frac{1}{2}, \frac{1}{2 \sqrt{3}}+\frac{1}{2}\right)^{T} \tag{2.53}
\end{equation*}
$$

The above axis/angle representation characterizes a given rotation by four quantities, namely the three components of the equivalent axis k and the equivalent angle θ. However, since the equivalent axis k is given as a unit vector only two of its components are independent. The third is constrained by the condition that k is of unit length. Therefore, only three independent quantities are required in this representation of a rotation R. We can represent the equivalent axis/angle by a single vector r as

$$
\begin{equation*}
r=\left(r_{x}, r_{y}, r_{z}\right)^{T}=\left(\theta k_{x}, \theta k_{y}, \theta k_{z}\right)^{T} \tag{2.54}
\end{equation*}
$$

Note, since k is a unit vector, that the length of the vector r is the equivalent angle θ and the direction of r is the equivalent axis k.

Remark 2.1 One should be careful not to interpret the representation in Equation (2.54) to mean that two axis/angle representations may be combined using standard rules of vector algebra as doing so would imply that rotations commute which, as we have seen, in not true in general.

2.6 RIGID MOTIONS

We have seen how to represent both positions and orientations. We combine these two concepts in this section to define a rigid motion and, in the next section, we derive an efficient matrix representation for rigid motions using the notion of homogeneous transformation.

Definition 2.1 A rigid motion is an ordered pair (d, R) where $d \in \mathbb{R}^{3}$ and $R \in S O(3)$. The group of all rigid motions is known as the Special Euclidean Group and is denoted by $S E(3)$. We see then that $S E(3)=$ $\mathbb{R}^{3} \times S O(3) .{ }^{a}$
${ }^{a}$ The definition of rigid motion is sometimes broadened to include reflections, which correspond to $\operatorname{det} R=-1$. We will always assume in this text that $\operatorname{det} R=+1$, i.e. that $R \in S O(3)$.

A rigid motion is a pure translation together with a pure rotation. Referring to Figure 2.14 we see that if frame $o_{1} x_{1} y_{1} z_{1}$ is obtained from frame $o_{0} x_{0} y_{0} z_{0}$ by first applying a rotation specified by R_{1}^{0} followed by a translation given (with respect to $o_{0} x_{0} y_{0} z_{0}$) by d_{1}^{0}, then the coordinates p^{0} are given by

$$
\begin{equation*}
p^{0}=R_{1}^{0} p^{1}+d_{1}^{0} \tag{2.55}
\end{equation*}
$$

Two points are worth noting in this figure. First, note that we cannot simply add the vectors p^{0} and p^{1} since they are defined relative to frames with different orientations, i.e. with respect to frames that are not parallel. However, we are able to add the vectors p^{1} and $R_{1}^{0} p^{1}$ precisely because multiplying p^{1} by the orientation matrix R_{1}^{0} expresses p^{1} in a frame that is parallel

TO APPEAR

Fig. 2.14 Homogeneous transformations in two dimensions.
to frame $o_{0} x_{0} y_{0} z_{0}$. Second, it is not important in which order the rotation and translation are performed.

If we have the two rigid motions

$$
\begin{equation*}
p^{0}=R_{1}^{0} p^{1}+d_{1}^{0} \tag{2.56}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{1}=R_{2}^{1} p^{2}+d_{2}^{1} \tag{2.57}
\end{equation*}
$$

then their composition defines a third rigid motion, which we can describe by substituting the expression for p^{1} from Equation (2.57) into Equation (2.56)

$$
\begin{equation*}
p^{0}=R_{1}^{0} R_{2}^{1} p^{2}+R_{1}^{0} d_{2}^{1}+d_{1}^{0} \tag{2.58}
\end{equation*}
$$

Since the relationship between p^{0} and p^{2} is also a rigid motion, we can equally describe it as

$$
\begin{equation*}
p^{0}=R_{2}^{0} p^{2}+d_{2}^{0} \tag{2.59}
\end{equation*}
$$

Comparing Equations (2.58) and (2.59) we have the relationships

$$
\begin{align*}
R_{2}^{0} & =R_{1}^{0} R_{2}^{1} \tag{2.60}\\
d_{2}^{0} & =d_{1}^{0}+R_{1}^{0} d_{2}^{1} \tag{2.61}
\end{align*}
$$

Equation (2.60) shows that the orientation transformations can simply be multiplied together and Equation (2.61) shows that the vector from the origin o_{0} to the origin o_{2} has coordinates given by the sum of d_{1}^{0} (the vector from o_{0} to o_{1} expressed with respect to $o_{0} x_{0} y_{0} z_{0}$) and $R_{1}^{0} d_{2}^{1}$ (the vector from o_{1} to o_{2}, expressed in the orientation of the coordinate system $o_{0} x_{0} y_{0} z_{0}$).

2.7 HOMOGENEOUS TRANSFORMATIONS

One can easily see that the calculation leading to Equation (2.58) would quickly become intractable if a long sequence of rigid motions were considered.

In this section we show how rigid motions can be represented in matrix form so that composition of rigid motions can be reduced to matrix multiplication as was the case for composition of rotations.

In fact, a comparison of Equations (2.60) and (2.61) with the matrix identity

$$
\left[\begin{array}{cc}
R_{1}^{0} & d_{1}^{0} \tag{2.62}\\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2}^{1} & d_{1}^{2} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{1}^{0} R_{2}^{1} & R_{1}^{0} d_{1}^{2}+d_{1}^{0} \\
0 & 1
\end{array}\right]
$$

where 0 denotes the row vector $(0,0,0)$, shows that the rigid motions can be represented by the set of matrices of the form

$$
H=\left[\begin{array}{cc}
R & d \tag{2.63}\\
0 & 1
\end{array}\right] ; R \in S O(3), d \in \mathbb{R}^{3}
$$

Transformation matrices of the form given in Equation (2.63) are called homogeneous transformations. A homogeneous transformation is therefore nothing more than a matrix representation of a rigid motion and we will use $S E(3)$ interchangeably to represent both the set of rigid motions and the set of all 4×4 matrices H of the form given in Equation (2.63)

Using the fact that R is orthogonal it is an easy exercise to show that the inverse transformation H^{-1} is given by

$$
H^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} d \tag{2.64}\\
0 & 1
\end{array}\right]
$$

In order to represent the transformation given in Equation (2.55) by a matrix multiplication, we must augment the vectors p^{0} and p^{1} by the addition of a fourth component of 1 as follows,

$$
\begin{align*}
& P^{0}=\left[\begin{array}{c}
p^{0} \\
1
\end{array}\right] \tag{2.65}\\
& P^{1}=\left[\begin{array}{c}
p^{1} \\
1
\end{array}\right] \tag{2.66}
\end{align*}
$$

The vectors P^{0} and P^{1} are known as homogeneous representations of the vectors p^{0} and p^{1}, respectively. It can now be seen directly that the transformation given in Equation (2.55) is equivalent to the (homogeneous) matrix equation

$$
\begin{equation*}
P^{0}=H_{1}^{0} P^{1} \tag{2.67}
\end{equation*}
$$

A set of basic homogeneous transformations generating $S E(3)$ is given by

$$
\operatorname{Trans}_{x, a}=\left[\begin{array}{cccc}
1 & 0 & 0 & a \tag{2.68}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{x, \alpha}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c_{\alpha} & -s_{\alpha} & 0 \\
0 & s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{ll}
\operatorname{Trans}_{y, b}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{y, \beta}=\left[\begin{array}{rrrr}
c_{\beta} & 0 & s_{\beta} & 0 \\
0 & 1 & 0 & 0 \\
-s_{\beta} & 0 & c_{\beta} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Trans}_{z, c}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{x, \gamma}=\left[\begin{array}{rrrr}
c_{\gamma} & -s_{\gamma} & 0 & 0 \\
s_{\gamma} & c_{\gamma} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{2.70}
\end{array}
$$

for translation and rotation about the x, y, z-axes, respectively.
The most general homogeneous transformation that we will consider may be written now as

$$
H_{1}^{0}=\left[\begin{array}{rrrr}
n_{x} & s_{x} & a_{x} & d_{x} \tag{2.71}\\
n_{y} & s_{y} & a_{y} & d_{y} \\
n_{z} & s_{x} & a_{z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
n & s & a & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In the above equation $n=\left(n_{x}, n_{y}, n_{z}\right)^{T}$ is a vector representing the direction of x_{1} in the $o_{0} x_{0} y_{0} z_{0}$ system, $s=\left(s_{x}, s_{y}, s_{z}\right)^{T}$ represents the direction of y_{1}, and $a=\left(a_{x}, a_{y}, a_{z}\right)^{T}$ represents the direction of z_{1}. The vector $d=$ $\left(d_{x}, d_{y}, d_{z}\right)^{T}$ represents the vector from the origin o_{0} to the origin o_{1} expressed in the frame $o_{0} x_{0} y_{0} z_{0}$. The rationale behind the choice of letters n, s and a is explained in Chapter 3.

Composition Rule for Homogeneous Transformations

The same interpretation regarding composition and ordering of transformations holds for 4×4 homogeneous transformations as for 3×3 rotations. Given a homogeneous transformation H_{1}^{0} relating two frames, if a second rigid motion, represented by $H \in S E(3)$ is performed relative to the current frame, then

$$
H_{2}^{0}=H_{1}^{0} H
$$

whereas if the second rigid motion is performed relative to the fixed frame, then

$$
H_{2}^{0}=H H_{1}^{0}
$$

Example 2.10

The homogeneous transformation matrix H that represents a rotation by angle α about the current x-axis followed by a translation of b units along the current x-axis, followed by a translation of d units along the current z-axis,
followed by a rotation by angle θ about the current z-axis, is given by

$$
\begin{aligned}
H & =\operatorname{Rot}_{x, \alpha} \operatorname{Trans}_{x, b} \operatorname{Trans}_{z, d} \operatorname{Rot}_{z, \theta} \\
& =\left[\begin{array}{rrrr}
c_{\theta} & -s_{\theta} & 0 & b \\
c_{\alpha} s_{\theta} & c_{\alpha} c_{\theta} & -s_{\alpha} & -d s_{\alpha} \\
s_{\alpha} s_{\theta} & s_{\alpha} c_{\theta} & c_{\alpha} & d c_{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

\diamond
The homogeneous representation given in Equation (2.63) is a special case of homogeneous coordinates, which have been extensively used in the field of computer graphics. There, one is interested in scaling and/or perspective transformations in addition to translation and rotation. The most general homogeneous transformation takes the form

$$
H=\left[\begin{array}{c|c}
R_{3 \times 3} & d_{3 \times 1} \tag{2.72}\\
\hline f_{1 \times 3} & s_{1 \times 1}
\end{array}\right]=\left[\begin{array}{c|c}
\text { Rotation } & \text { Translation } \\
\hline \text { perspective } \mid \text { scale factor }
\end{array}\right]
$$

For our purposes we always take the last row vector of H to be $(0,0,0,1)$, although the more general form given by (2.72) could be useful, for example, for interfacing a vision system into the overall robotic system or for graphic simulation.

2.8 CHAPTER SUMMARY

In this chapter, we have seen how matrices in $S E(n)$ can be used to represent the relative position and orientation of two coordinate frames for $n=2,3$. We have adopted a notional convention in which a superscript is used to indicate a reference frame. Thus, the notation p^{0} represents the coordinates of the point p relative to frame 0 .

The relative orientation of two coordinate frames can be specified by a rotation matrix, $R \in S O(n)$, with $n=2,3$. In two dimensions, the orientation of frame 1 with respect to frame 0 is given by

$$
R_{1}^{0}=\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

in which θ is the angle between the two coordinate frames. In the three dimensional case, the rotation matrix is given by

$$
R_{1}^{0}=\left[\begin{array}{ccc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
$$

In each case, the columns of the rotation matrix are obtained by projecting an axis of the target frame (in this case, frame 1) onto the coordinate axes of the reference frame (in this case, frame 0).

The set of $n \times n$ rotation matrices is known as the special orthogonal group of order n, and is denoted by $S O(n)$. An important property of these matrices is that $R^{-1}=R^{T}$ for any $R \in S O(n)$.

Rotation matrices can be used to perform coordinate transformations between frames that differ only in orientation. We derived rules for the composition of rotational transformations as

$$
R_{2}^{0}=R_{1}^{0} R
$$

for the case where the second transformation, R, is performed relative to the current frame and

$$
R_{2}^{0}=R R_{1}^{0}
$$

for the case where the second transformation, R, is performed relative to the fixed frame.

In the three dimensional case, a rotation matrix can be parameterized using three angles. A common convention is to use the Euler angles (ϕ, θ, ψ), which correspond to successive rotations about the z, y and z axes. The corresponding rotation matrix is given by

$$
R(\phi, \theta, \psi)=R_{z, \phi} R_{y, \theta} R_{z, \psi}
$$

Roll, pitch and yaw angles are similar, except that the successive rotations are performed with respect to the fixed, world frame instead of being performed with respect to the current frame.

Homogeneous transformations combine rotation and translation. In the three dimensional case, a homogeneous transformation has the form

$$
H=\left[\begin{array}{cc}
R & d \\
0 & 1
\end{array}\right] ; R \in S O(3), d \in \mathbb{R}^{3}
$$

The set of all such matrices comprises the set $S E(3)$, and these matrices can be used to perform coordinate transformations, analogous to rotational transformations using rotation matrices.

The interested reader can find deeper explanations of these concepts in a variety of sources, including [4] [18] [29] [62] [54] [75].

1. Using the fact that $v_{1} \cdot v_{2}=v_{1}^{T} v_{2}$, show that the dot product of two free vectors does not depend on the choice of frames in which their coordinates are defined.
2. Show that the length of a free vector is not changed by rotation, i.e., that $\|v\|=\|R v\|$.
3. Show that the distance between points is not changed by rotation i.e., that $\left\|p_{1}-p_{2}\right\|=\left\|R p_{1}-R p_{2}\right\|$.
4. If a matrix R satisfies $R^{T} R=I$, show that the column vectors of R are of unit length and mutually perpendicular.
5. If a matrix R satisfies $R^{T} R=I$, then
a) show that $\operatorname{det} R= \pm 1$
b) Show that $\operatorname{det} R= \pm 1$ if we restrict ourselves to right-handed coordinate systems.
6.
7. A group is a set X together with an operation $*$ defined on that set such that

- $x_{1} * x_{2} \in X$ for all $x_{1}, x_{2} \in X$
- $\left(x_{1} * x_{2}\right) * x_{3}=x_{1} *\left(x_{2} * x_{3}\right)$
- There exists an element $I \in X$ such that $I * x=x * I=x$ for all $x \in X$.
- For every $x \in X$, there exists some element $y \in X$ such that $x * y=y * x=I$.

Show that $\mathrm{SO}(\mathrm{n})$ with the operation of matrix multiplication is a group. Verify Equations (2.3)-(2.5).
8. Derive Equations (2.6) and (2.7).
9. Suppose A is a 2×2 rotation matrix. In other words $A^{T} A=I$ and $\operatorname{det} A=1$. Show that there exists a unique θ such that A is of the form

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

10. Consider the following sequence of rotations:
(a) Rotate by ϕ about the world x-axis.
(b) Rotate by θ about the current z-axis.
(c) Rotate by ψ about the world y-axis.

Write the matrix product that will give the resulting rotation matrix (do not perform the matrix multiplication).
11. Consider the following sequence of rotations:
(a) Rotate by ϕ about the world x-axis.
(b) Rotate by θ about the world z-axis.
(c) Rotate by ψ about the current x-axis.

Write the matrix product that will give the resulting rotation matrix (do not perform the matrix multiplication).
12. Consider the following sequence of rotations:
(a) Rotate by ϕ about the world x-axis.
(b) Rotate by θ about the current z-axis.
(c) Rotate by ψ about the current x-axis.
(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix (do not perform the matrix multiplication).
13. Consider the following sequence of rotations:
(a) Rotate by ϕ about the world x-axis.
(b) Rotate by θ about the world z-axis.
(c) Rotate by ψ about the current x-axis.
(d) Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix (do not perform the matrix multiplication).
14. Find the rotation matrix representing a roll of $\frac{\pi}{4}$ followed by a yaw of $\frac{\pi}{2}$ followed by a pitch of $\frac{\pi}{2}$.
15. If the coordinate frame $o_{1} x_{1} y_{1} z_{1}$ is obtained from the coordinate frame $o_{0} x_{0} y_{0} z_{0}$ by a rotation of $\frac{\pi}{2}$ about the x-axis followed by a rotation of $\frac{\pi}{2}$ about the fixed y-axis, find the rotation matrix R representing the composite transformation. Sketch the initial and final frames.
16. Suppose that three coordinate frames $o_{1} x_{1} y_{1} z_{1}, o_{2} x_{2} y_{2} z_{2}$ and $o_{3} x_{3} y_{3} z_{3}$ are given, and suppose

$$
R_{2}^{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] ; R_{3}^{1}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Find the matrix R_{3}^{2}.
17. Verify Equation (2.46).
18. If R is a rotation matrix show that +1 is an eigenvalue of R. Let k be a unit eigenvector corresponding to the eigenvalue +1 . Give a physical interpretation of k.
19. Let $k=\frac{1}{\sqrt{3}}(1,1,1)^{T}, \theta=90^{\circ}$. Find $R_{k, \theta}$.
20. Show by direct calculation that $R_{k, \theta}$ given by Equation (2.46) is equal to R given by Equation (2.51) if θ and k are given by Equations (2.52) and (2.53), respectively.
21. Compute the rotation matrix given by the product

$$
R_{x, \theta} R_{y, \phi} R_{z, \pi} R_{y,-\phi} R_{x,-\theta}
$$

22. Suppose R represents a rotation of 90° about y_{0} followed by a rotation of 45° about z_{1}. Find the equivalent axis/angle to represent R. Sketch the initial and final frames and the equivalent axis vector k.
23. Find the rotation matrix corresponding to the set of Euler angles $\left\{\frac{\pi}{2}, 0, \frac{\pi}{4}\right\}$. What is the direction of the x_{1} axis relative to the base frame?
24. Section 2.5.1 described only the Z-Y-Z Euler angles. List all possible sets of Euler angles. Is it possible to have Z-Z-Y Euler angles? Why or why not?
25. Unit magnitude complex numbers (i.e., $a+i b$ such that $a^{2}+b^{2}=1$) can be used to represent orientation in the plane. In particular, for the complex number $a+i b$, we can define the angle $\theta=\operatorname{atan} 2(a, b)$. Show that multiplication of two complex numbers corresponds to addition of the corresponding angles.
26. Show that complex numbers together with the operation of complex multiplication define a group. What is the identity for the group? What is the inverse for $a+i b$?
27. Complex numbers can be generalized by defining three independent square roots for -1 that obey the multiplication rules

$$
\begin{aligned}
-1 & =i^{2}=j^{2}=k^{2} \\
i & =j k=-k j, \\
j & =k i=-i k, \\
k & =i j=-j i
\end{aligned}
$$

Using these, we define a quaternion by $Q=q_{0}+i q_{1}+j q_{2}+k q_{3}$, which is typically represented by the 4 -tuple $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$. A rotation by θ
about the unit vector $n=\left(n_{x}, n_{y}, n_{z}\right)^{T}$ can be represented by the unit quaternion $Q=\left(\cos \frac{\theta}{2}, n_{x} \sin \frac{\theta}{2}, n_{y} \sin \frac{\theta}{2}, n_{z} \sin \frac{\theta}{2}\right)$. Show that such a quaternion has unit norm, i.e., that $q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1$.
28. Using $Q=\left(\cos \frac{\theta}{2}, n_{x} \sin \frac{\theta}{2}, n_{y} \sin \frac{\theta}{2}, n_{z} \sin \frac{\theta}{2}\right)$, and the results from Section 2.5.3, determine the rotation matrix R that corresponds to the rotation represented by the quaternion $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$.
29. Determine the quaternion Q that represents the same rotation as given by the rotation matrix R.
30. The quaternion $Q=\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$ can be thought of as having a scalar component q_{0} and a vector component $=\left(q_{1}, q_{2}, q_{3}\right)^{T}$. Show that the product of two quaternions, $Z=X Y$ is given by

$$
\begin{aligned}
z_{0} & =x_{0} y_{0}-x^{T} y \\
z & =x_{0} y+y_{0} x+x \times y
\end{aligned}
$$

Hint: perform the multiplication $\left(x_{0}+i x_{1}+j x_{2}+k x_{3}\right)\left(y_{0}+i y_{1}+j y_{2}+k y_{3}\right)$ and simplify the result.
31. Show that $Q_{I}=(1,0,0,0)$ is the identity element for unit quaternion multiplication, i.e., that $Q Q_{I}=Q_{I} Q=Q$ for any unit quaternion Q.
32. The conjugate Q^{*} of the quaternion Q is defined as

$$
Q^{*}=\left(q_{0},-q_{1},-q_{2},-q_{3}\right)
$$

Show that Q^{*} is the inverse of Q, i.e., that $Q^{*} Q=Q Q^{*}=(1,0,0,0)$.
33. Let v be a vector whose coordinates are given by $\left(v_{x}, v_{y}, v_{z}\right)^{T}$. If the quaternion Q represents a rotation, show that the new, rotated coordinates of v are given by $Q\left(0, v_{x}, v_{y}, v_{z}\right) Q^{*}$, in which $\left(0, v_{x}, v_{y}, v_{z}\right)$ is a quaternion with zero as its real component.
34. Let the point p be rigidly attached to the end effector coordinate frame with local coordinates (x, y, z). If Q specifies the orientation of the end effector frame with respect to the base frame, and T is the vector from the base frame to the origin of the end effector frame, show that the coordinates of p with respect to the base frame are given by

$$
\begin{equation*}
Q(0, x, y, z) Q^{*}+T \tag{2.73}
\end{equation*}
$$

in which $(0, x, y, z)$ is a quaternion with zero as its real component.
35. Compute the homogeneous transformation representing a translation of 3 units along the x-axis followed by a rotation of $\frac{\pi}{2}$ about the current z-axis followed by a translation of 1 unit along the fixed y-axis. Sketch

Fig. 2.15 Diagram for Problem 2-36.
the frame. What are the coordinates of the origin O_{1} with respect to the original frame in each case?
36. Consider the diagram of Figure 2.15. Find the homogeneous transformations $H_{1}^{0}, H_{2}^{0}, H_{2}^{1}$ representing the transformations among the three frames shown. Show that $H_{2}^{0}=H_{1}^{0}, H_{2}^{1}$.
37. Consider the diagram of Figure 2.16. A robot is set up 1 meter from a table. The table top is 1 meter high and 1 meter square. A frame $o_{1} x_{1} y_{1} z_{1}$ is fixed to the edge of the table as shown. A cube measuring 20 cm on a side is placed in the center of the table with frame $o_{2} x_{2} y_{2} z_{2}$ established at the center of the cube as shown. A camera is situated directly above the center of the block 2 m above the table top with frame $o_{3} x_{3} y_{3} z_{3}$ attached as shown. Find the homogeneous transformations relating each of these frames to the base frame $o_{0} x_{0} y_{0} z_{0}$. Find the homogeneous transformation relating the frame $o_{2} x_{2} y_{2} z_{2}$ to the camera frame $o_{3} x_{3} y_{3} z_{3}$.
38. In Problem 37, suppose that, after the camera is calibrated, it is rotated 90° about z_{3}. Recompute the above coordinate transformations.
39. If the block on the table is rotated 90° about z_{2} and moved so that its center has coordinates $(0, .8, .1)^{T}$ relative to the frame $o_{1} x_{1} y_{1} z_{1}$, compute the homogeneous transformation relating the block frame to the camera frame; the block frame to the base frame.
40. Consult an astronomy book to learn the basic details of the Earth's rotation about the sun and about its own axis. Define for the Earth a local coordinate frame whose z-axis is the Earth's axis of rotation. Define $t=0$ to be the exact moment of the summer solstice, and the global reference frame to be coincident with the Earth's frame at time $t=0$. Give an expression $R(t)$ for the rotation matrix that represents the instantaneous orientation of the earth at time t. Determine as a function

Fig. 2.16 Diagram for Problem 2-37.
of time the homogeneous transformation that specifies the Earth's frame with respect to the global reference frame.
41. In general, multiplication of homogeneous transformation matrices is not commutative. Consider the matrix product

$$
H=\operatorname{Rot}_{x, \alpha} \operatorname{Trans}_{x, b} \operatorname{Trans}_{z, d} \operatorname{Rot}_{z, \theta}
$$

Determine which pairs of the four matrices on the right hand side commute. Explain why these pairs commute. Find all permutations of these four matrices that yield the same homogeneous transformation matrix, H.

[^0]: ${ }^{1}$ Since we make extensive use of elementary matrix theory, the reader may wish to review Appendix B before beginning this chapter.

[^1]: ${ }^{2}$ We will use x_{i}, y_{i} to denote both coordinate axes and unit vectors along the coordinate axes depending on the context.

[^2]: ${ }^{3}$ See also Appendix B.

[^3]: ${ }^{4}$ See Appendix B.

[^4]: ${ }^{5}$ It should be noted that other conventions exist for naming the roll, pitch and yaw angles.

