
Chapter 5

VELOCITY KINEMATICS
– THE MANIPULATOR
JACOBIAN

In the previous chapters we derived the forward and inverse position equa-
tions relating joint positions and end-effector positions and orientations. In
this chapter we derive the velocity relationships, relating the linear and an-
gular velocities of the end-effector (or any other point on the manipulator)
to the joint velocities. The end-effector frame contains information con-
cerning both the orientation of the frame and the position of the origin of
the frame; in this chapter we will derive representations for the velocities
associated with each of these quantities. In particular, we will derive the
angular velocity of the end-effector frame (which gives the rate of rotation
of the frame) and the linear velocity of the origin. We will then relate these
velocities to the joint velocities, q̇i.

Mathematically, the forward kinematic equations define a function be-
tween the space of cartesian positions and orientations and the space of
joint positions. The velocity relationships are then determined by the Ja-

cobian of this function. The Jacobian is a matrix-valued function and can
be thought of as the vector version of the ordinary derivative of a scalar
function. This Jacobian or Jacobian matrix is one of the most important
quantities in the analysis and control of robot motion. It arises in virtu-
ally every aspect of robotic manipulation: in the planning and execution
of smooth trajectories, in the determination of singular configurations, in
the execution of coordinated anthropomorphic motion, in the derivation of
the dynamic equations of motion, and in the transformation of forces and
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torques from the end-effector to the manipulator joints.

Since the Jacobian matrix encodes relationships between velocities, we
begin this chapter with an investigation of velocities, and how to represent
them. We first consider angular velocity about a fixed axis, and then gen-
eralize this with the aid of skew symmetric matrices. Equipped with this
general representation of angular velocities, we are able to derive equations
for both the angular velocity, and the linear velocity for the origin, of a
moving frame.

We then proceed to the derivation of the manipulator Jacobian. For an n-
link manipulator we first derive the Jacobian representing the instantaneous
transformation between the n-vector of joint velocities and the 6-vector con-
sisting of the linear and angular velocities of the end-effector. This Jacobian
is then a 6 × n matrix. The same approach is used to determine the trans-
formation between the joint velocities and the linear and angular velocity
of any point on the manipulator. This will be important when we discuss
the derivation of the dynamic equations of motion in Chapter 6. We then
discuss the notion of singular configurations. These are configurations in
which the manipulator loses one or more degrees-of-freedom. We show how
the singular configurations are determined geometrically and give several
examples. Following this, we briefly discuss the inverse problems of deter-
mining joint velocities and accelerations for specified end-effector velocities
and accelerations. We end the chapter by considering redundant manipu-
lators. This includes discussions of the inverse velocity problem, singular
value decomposition and manipulability.

5.1 Angular Velocity: The Fixed Axis Case

When a rigid body moves in a pure rotation about a fixed axis, every point
of the body moves in a circle. The centers of these circles lie on the axis of
rotation. As the body rotates, a perpendicular from any point of the body
to the axis sweeps out an angle θ, and this angle is the same for every point
of the body. If k is a unit vector in the direction of the axis of rotation,
then the angular velocity is given by

ω = θ̇k (5.1)

in which θ̇ is the time derivative of θ.

Given the angular velocity of the body, one learns in introductory dy-
namics courses that the linear velocity of any point on the body is given by
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the equation

v = ω × r (5.2)

in which r is a vector from the origin (which in this case is assumed to lie on
the axis of rotation) to the point. In fact, the computation of this velocity
v is normally the goal in introductory dynamics courses, and therefore, the
main role of an angular velocity is to induce linear velocities of points in a
rigid body. In our applications, we are interested in describing the motion
of a moving frame, including the motion of the origin of the frame through
space and also the rotational motion of the frame’s axes. Therefore, for our
purposes, the angular velocity will hold equal status with linear velocity.

As in previous chapters, in order to specify the orientation of a rigid ob-
ject, we rigidly attach a coordinate frame to the object, and then specify the
orientation of the coordinate frame. Since every point on the object experi-
ences the same angular velocity (each point sweeps out the same angle θ in a
given time interval), and since each point of the body is in a fixed geometric
relationship to the body-attached frame, we see that the angular velocity is
a property of the attached coordinate frame itself. Angular velocity is not
a property of individual points. Individual points may experience a linear
velocity that is induced by an angular velocity, but it makes no sense to
speak of a point itself rotating. Thus, in equation (5.2) v corresponds to
the linear velocity of a point, while ω corresponds to the angular velocity
associated with a rotating coordinate frame.

In this fixed axis case, the problem of specifying angular displacements is
really a planar problem, since each point traces out a circle, and since every
circle lies in a plane. Therefore, it is tempting to use θ̇ to represent the
angular velocity. However, as we have already seen in Chapter 2, this choice
does not generalize to the three-dimensional case, either when the axis of
rotation is not fixed, or when the angular velocity is the result of multiple
rotations about distinct axes. For this reason, we will develop a more general
representation for angular velocities. This is analogous to our development of
rotation matrices in Chapter 2 to represent orientation in three dimensions.
The key tool that we will need to develop this representation is the skew
symmetric matrix, which is the topic of the next section.

5.2 Skew Symmetric Matrices

In the Section 5.3 we will derive properties of rotation matrices that can
be used to computing relative velocity transformations between coordinate
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frames. Such transformations involve computing derivatives of rotation ma-
trices. By introducing the notion of a skew symmetric matrix it is possible
to simplify many of the computations involved.

Definition 2 A matrix S is said to be skew symmetric if and only if

ST + S = 0. (5.3)

We denote the set of all 3 × 3 skew symmetric matrices by SS(3). If S ∈
SS(3) has components sij , i, j = 1, 2, 3 then (5.3) is equivalent to the nine
equations

sij + sji = 0 i, j = 1, 2, 3. (5.4)

From (5.4) we see that sii = 0; that is, the diagonal terms of S are zero and
the off diagonal terms sij , i 6= j satisfy sij = −sji. Thus S contains only
three independent entries and every 3 × 3 skew symmetric matrix has the
form

S =







0 −s3 s2
s3 0 −s1
−s2 s1 0






. (5.5)

If a = (ax, ay, az)
T is a 3-vector, we define the skew symmetric matrix S(a)

as

S(a) =







0 −az ay
az 0 −ax
−ay ax 0






. (5.6)

Example 5.1 We denote by i, j and k the three unit basis coordinate
vectors,

i = (1, 0, 0)T

j = (0, 1, 0)T

k = (0, 0, 1)T .

The skew symmetric matrices S(i), S(j), and S(k) are given by

S(i) =







0 0 0
0 0 −1
0 1 0






; S(j) =







0 0 1
0 0 0

−1 0 0






; S(k) =







0 −1 0
1 0 0
0 0 0






.(5.7)
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⋄

An important property possessed by the matrix S(a) is linearity. For
any vectors a and b belonging to IR3 and scalars α and β we have

S(αa + βb) = αS(a) + βS(b). (5.8)

Another important property of S(a) is that for any vector p = (px, py, pz)
T

S(a)p = a × p (5.9)

where a×p denotes the vector cross product defined in Appendix A. Equa-
tion (5.9) can be verified by direct calculation.

If R ∈ SO(3) and a, b are vectors in IR3 it can also be shown by direct
calculation that

R(a × b) = Ra ×Rb. (5.10)

Equation (5.10) is not true in general unlessR is orthogonal. Equation (5.10)
says that if we first rotate the vectors a and b using the rotation transforma-
tion R and then form the cross product of the rotated vectors Ra and Rb,
the result is the same as that obtained by first forming the cross product
a × b and then rotating to obtain R(a × b).

For any R ∈ SO(3) and any b ∈ IR3, it follows from (5.9) and (5.10) that

RS(a)RTb = R(a ×RTb) (5.11)

= (Ra) × (RRTb) (5.12)

= (Ra) × b (5.13)

= S(Ra)b. (5.14)

Here, (5.12) follows because of (5.10), and (5.13) follows since R is orthogo-
nal. Since this equality holds for all b ∈ IR3, we have shown the useful fact
that

RS(a)RT = S(Ra) (5.15)

for R ∈ SO(3), a ∈ IR3. As we will see, (5.15) is one of the most useful
expressions that we will derive. The left hand side of Equation (5.15) rep-
resents a similarity transformation of the matrix S(a). The equation says
therefore that the matrix representation of S(a) in a coordinate frame ro-
tated by R is the same as the skew symmetric matrix S(Ra) corresponding
to the vector a rotated by R.
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Suppose now that a rotation matrix R is a function of the single variable
θ. Hence R = R(θ) ∈ SO(3) for every θ. Since R is orthogonal for all θ it
follows that

R(θ)R(θ)T = I. (5.16)

Differentiating both sides of (5.16) with respect to θ using the product rule
gives

dR

dθ
R(θ)T +R(θ)

dRT

dθ
= 0. (5.17)

Let us define the matrix

S :=
dR

dθ
R(θ)T . (5.18)

Then the transpose of S is

ST =

(

dR

dθ
R(θ)T

)T

= R(θ)
dRT

dθ
. (5.19)

Equation (5.17) says therefore that

S + ST = 0. (5.20)

In other words, the matrix S defined by (5.18) is skew symmetric. Multiply-
ing both sides of (5.18) on the right by R and using the fact that RTR = I
yields

dR

dθ
= SR(θ). (5.21)

Equation (5.21) is very important. It says that computing the derivative
of the rotation matrix R is equivalent to a matrix multiplication by a skew
symmetric matrix S. The most commonly encountered situation is the case
where R is a basic rotation matrix or a product of basic rotation matrices.

Example 5.2 If R = Rx,θ, the basic rotation matrix given by (2.19), then
direct computation shows that

S =
dR

dθ
RT =







0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ













1 0 0
0 cos θ sin θ
0 − sin θ cos θ






(5.22)

=







0 0 0
0 0 −1
0 1 0






= S(i). (5.23)
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Thus we have shown that

dRx,θ

dθ
= S(i)Rx,θ. (5.24)

Similar computations show that

dRy,θ

dθ
= S(j)Ry,θ;

dRz,θ

dθ
= S(k)Rz,θ. (5.25)

⋄

Example 5.3 Let Rk,θ be a rotation about the axis defined by k as in (2.71).
Note that in this example k is not the unit coordinate vector (0, 0, 1)T . It is
easy to check that S(k)3 = −S(k). Using this fact together with Problem 12
it follows that

dRk,θ

dθ
= S(k)Rk,θ. (5.26)

⋄

5.3 Angular Velocity: The General Case

We now consider the general case of angular velocity about an arbitrary,
possibly moving, axis. Suppose that a rotation matrix R is time varying, so
that R = R(t) ∈ SO(3) for every t ∈ IR. An argument identical to the one
in the previous section shows that the time derivative Ṙ(t) of R(t) is given
by

Ṙ(t) = S(t)R(t) (5.27)

where the matrix S(t) is skew symmetric. Now, since S(t) is skew symmetric,
it can be represented as S(ω(t)) for a unique vector ω(t). This vector ω(t) is
the angular velocity of the rotating frame with respect to the fixed frame
at time t. Thus, the time derivative Ṙ(t) is given by

Ṙ(t) = S(ω(t))R(t) (5.28)

in which ω(t) is the angular velocity.

Example 5.4 Suppose that R(t) = Rx,θ(t). Then Ṙ(t) = dR
dt is computed

using the chain rule as

Ṙ =
dR

dθ

dθ

dt
= θ̇S(i)R(t) = S(ω(t))R(t) (5.29)

where ω = iθ̇ is the angular velocity. Note, here i = (1, 0, 0)T .
⋄
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5.4 Addition of Angular Velocities

We are often interested in finding the resultant angular velocity due to the
relative rotation of several coordinate frames. We now derive the expressions
for the composition of angular velocities of two moving frames o1x1y1z1 and
o2x2y2z2 relative to the fixed frame o0x0y0z0. For now, we assume that the
three frames share a common origin. Let the relative orientations of the
frames o1x1y1z1 and o2x2y2z2 be given by the rotation matrices R0

1(t) and
R1

2(t) (both time varying). As in Chapter 2,

R0
2(t) = R0

1(t)R
1
2(t). (5.30)

Taking derivatives of both sides of (5.30) with respect to time yields

Ṙ0
2 = Ṙ0

1R
1
2 +R0

1Ṙ
1
2. (5.31)

Using (5.28), the term Ṙ0
2 on the left-hand side of (5.31) can be written

Ṙ0
2 = S(ω0

2)R
0
2. (5.32)

In this expression, ω0
2 denotes the total angular velocity experienced by

frame o2x2y2z2. This angular velocity results from the combined rotations
expressed by R0

1 and R1
2.

The first term on the right-hand side of (5.31) is simply

Ṙ0
1R

1
2 = S(ω0

a)R
0
1R

1
2 = S(ω0

a)R
0
2. (5.33)

Note that in this equation, ω0
a denotes the angular velocity of frame o1x1y1z1

that results from the changing R0
1, and this angular velocity vector is ex-

pressed relative to the coordinate system o0x0y0z0.

Let us examine the second term on the right hand side of (5.31). Using
the expression (5.15) we have

R0
1Ṙ

1
2 = R0

1S(ω1
b)R

1
2 (5.34)

= R0
1S(ω1

b)R
0
1

TR0
1R

1
2 = S(R0

1ω
1
b)R

0
1R

1
2

= S(R0
1ω

1
b)R

0
2. (5.35)

Note that in this equation, ω1
b denotes the angular velocity of frame o2x2y2z2

that corresponds to the changing R1
2, expressed relative to the coordinate

system o1x1y1z1. Thus, the product R0
1ω

1
b expresses this angular velocity

relative to the coordinate system o0x0y0z0.
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Now, combining the above expressions we have shown that

S(ω0
2)R

0
2 = {S(ω0

a) + S(R0
1ω

1
b)}R

0
2. (5.36)

Since S(a) + S(b) = S(a + b), we see that

ω0
2 = ω0

a +R0
1ω

1
b . (5.37)

In other words, the angular velocities can be added once they are expressed
relative to the same coordinate frame, in this case o0x0y0z0.

The above reasoning can be extended to any number of coordinate sys-
tems. In particular, suppose that we are given

R0
n = R0

1R
1
2 · · ·R

n−1
n . (5.38)

Although it is a slight abuse of notation, let us represent by ωi−1

i the angu-
lar velocity due to the rotation given by Ri−1

i , expressed relative to frame
oi−1xi−1yi−1zi−1. Extending the above reasoning we obtain

Ṙ0
n = S(ω0

n)R
0
n (5.39)

where

ω0
n = ω0

1 +R0
1ω

1
2 +R0

2ω
2
3 +R0

3ω
3
4 + · · · +R0

n−1ω
n−1
n . (5.40)

5.5 Linear Velocity of a Point Attached to a Mov-
ing Frame

We now consider the linear velocity of a point that is rigidly attached to a
moving frame. Suppose the point p is rigidly attached to the frame o1x1y1z1,
and that o1x1y1z1 is rotating relative to the frame o0x0y0z0. Then the
coordinates of p with respect to the frame o0x0y0z0 are given by

p0 = R0
1(t)p

1. (5.41)

The velocity ṗ0 is then given as

ṗ0 = Ṙ0
1(t)p

1 +R0
1(t)ṗ

1 (5.42)

= S(ω0)R0
1(t)p

1 (5.43)

= S(ω0)p0 = ω0 × p0

which is the familiar expression for the velocity in terms of the vector cross
product. Note that (5.43) follows from that fact that p is rigidly attached
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to frame o1x1y1z1, and therefore its coordinates relative to frame o1x1y1z1
do not change, giving ṗ1 = 0.

Now suppose that the motion of the frame o1x1y1z1 relative to o0x0y0z0
is more general. Suppose that the homogeneous transformation relating the
two frames is time-dependent, so that

H0
1 (t) =

[

R0
1(t) O0

1(t)
0 1

]

. (5.44)

For simplicity we omit the argument t and the subscripts and super-
scripts on R0

1 and O0
1, and write

p0 = Rp1 +O. (5.45)

Differentiating the above expression using the product rule gives

ṗ0 = Ṙp1 + Ȯ (5.46)

= S(ω)Rp1 + Ȯ

= ω × r + v

where r = Rp1 is the vector from O1 to p expressed in the orientation of the
frame o0x0y0z0, and v is the rate at which the origin O1 is moving.

If the point p is moving relative to the frame o1x1y1z1, then we must add
to the term v the term R(t)ṗ1, which is the rate of change of the coordinates
p1 expressed in the frame o0x0y0z0.

5.6 Derivation of the Jacobian

Consider an n-link manipulator with joint variables q1, . . . , qn . Let

T 0
n(q) =

[

R0
n(q) O0

n(q)
0 1

]

(5.47)

denote the transformation from the end-effector frame to the base frame,
where q = (q1, . . . , qn)

T is the vector of joint variables. As the robot moves
about, both the joint variables qi and the end-effector position O0

n and ori-
entation R0

n will be functions of time. The objective of this section is to
relate the linear and angular velocity of the end-effector to the vector of
joint velocities q̇(t). Let

S(ω0
n) = Ṙ0

n(R0
n)T (5.48)
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define the angular velocity vector ω0
n of the end-effector, and let

v0
n = Ȯ0

n (5.49)

denote the linear velocity of the end effector. We seek expressions of the
form

v0
n = Jvq̇ (5.50)

ω0
n = Jωq̇ (5.51)

where Jv and Jω are 3 × n matrices. We may write (5.50) and (5.51)
together as

[

v0
n

ω0
n

]

= J0
nq̇ (5.52)

where J0
n is given by

J0
n =

[

Jv
Jω

]

. (5.53)

The matrix J0
n is called the Manipulator Jacobian or Jacobian for short.

Note that J0
n is a 6 × n matrix where n is the number of links. We next

derive a simple expression for the Jacobian of any manipulator.

5.6.1 Angular Velocity

Recall from Equation (5.40) that angular velocities can be added vectorially
provided that they are expressed relative to a common coordinate frame.
Thus we can determine the angular velocity of the end-effector relative to
the base by expressing the angular velocity contributed by each joint in the
orientation of the base frame and then summing these.

If the i-th joint is revolute, then the i-th joint variable qi equals θi and
the axis of rotation is zi−1. Following the convention that we introduced
above, let ωi−1

i represent the angular velocity of link i that is imparted by
the rotation of joint i, expressed relative to frame oi−1xi−1yi−1zi−1. This
angular velocity is expressed in the frame i− 1 by

ωi−1

i = q̇iz
i−1

i−1 = q̇ik (5.54)

in which, as above, k is the unit coordinate vector (0, 0, 1)T .
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If the i-th joint is prismatic, then the motion of frame i relative to frame
i− 1 is a translation and

ωi−1

i = 0. (5.55)

Thus, if joint i is prismatic, the angular velocity of the end-effector does not
depend on qi, which now equals di.

Therefore, the overall angular velocity of the end-effector, ω0
n, in the base

frame is determined by Equation (5.40) as

ω0
n = ρ1q̇1k + ρ2q̇2R

0
1k + · · · + ρnq̇nR

0
n−1k (5.56)

=
n

∑

i−1

ρiq̇iz
0
i−1

in which ρi is equal to 1 if joint i is revolute and 0 if joint i is prismatic,
since

z0
i−1 = R0

i−1k. (5.57)

Of course z0
0 = k = (0, 0, 1)T .

The lower half of the Jacobian Jω, in (5.53) is thus given as

Jω = [ρ1z0 · · · ρnzn−1] . (5.58)

Note that in this equation, we have omitted the superscripts for the unit
vectors along the z-axes, since these are all referenced to the world frame.
In the remainder of the chapter we will follow this convention when there is
no ambiguity concerning the reference frame.

5.6.2 Linear Velocity

The linear velocity of the end-effector is just Ȯ0
n. By the chain rule for

differentiation

Ȯ0
n =

n
∑

i=1

∂O0
n

∂qi
q̇i. (5.59)

Thus we see that the i-th column of Jv, which we denote as Jvi
is given by

Jvi
=
∂O0

n

∂qi
. (5.60)

Furthermore this expression is just the linear velocity of the end-effector
that would result if q̇i were equal to one and the other q̇j were zero. In
other words, the i-th column of the Jacobian can be generated by holding
all joints fixed but the i-th and actuating the i-th at unit velocity. We now
consider the two cases (prismatic and revolute joints) separately.
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(i) Case 1: Prismatic Joints

If joint i is prismatic, then it imparts a pure translation to the end-effector.
From our study of the DH convention in Chapter 3, we can write the T 0

n as
the product of three transformations as follows

[

R0
n O0

n

0 1

]

= T 0
n (5.61)

= T 0
i−1T

i−1
i T i

n (5.62)

=

[

R0
i−1 O0

i−1

0 1

] [

Ri−1
i Oi−1

i

0 1

] [

Ri
n Oi

n

0 1

]

(5.63)

=

[

R0
n R0

iO
i
n +R0

i−1O
i−1

i +O0
i−1

0 1

]

, (5.64)

which gives

O0
n = R0

iO
i

n +R0
i−1O

i−1

i +O0
i−1. (5.65)

If only joint i is allowed to move, then both of Oi
n and O0

i−1 are constant.
Furthermore, if joint i is prismatic, then the rotation matrix R0

i−1 is also
constant (again, assuming that only joint i is allowed to move). Finally,
recall from Chapter 3 that, by the DH convention, Oi−1

i = (aici, aisi, di)
T .

Thus, differentiation of O0
n gives

∂O0
n

∂qi
=

∂

∂di
R0

i−1O
i−1

i (5.66)

= R0
i−1

∂

∂di







aici
aisi
di






(5.67)

= ḋiR
0
i−1







0
0
1






(5.68)

= ḋiz
0
i−1, (5.69)

in which di is the joint variable for prismatic joint i. Thus, (again, dropping
the zero superscript on the z-axis) for the case of prismatic joints we have

Jvi
= zi−1. (5.70)
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(ii) Case 2: Revolute Joints

If joint i is revolute, then we have qi = θi. Starting with (5.65), and letting
qi = θi, since R0

i is not constant with respect to θi, we obtain

∂

∂θi
O0
n =

∂

∂θi

[

R0
iO

i

n +R0
i−1O

i−1

i

]

(5.71)

=
∂

∂θi
R0

iO
i

n +R0
i−1

∂

∂θi
Oi−1

i (5.72)

= θ̇iS(z0
i−1)R

0
iO

i

n + θ̇iS(z0
i−1)R

0
i−1O

i−1

i (5.73)

= θ̇iS(z0
i−1)

[

R0
iO

i

n +R0
i−1O

i−1

i

]

(5.74)

= θ̇iS(z0
i−1)(O

0
n −O0

i−1) (5.75)

= θ̇iz
0
i−1 × (O0

n −O0
i−1). (5.76)

The second term in (5.73) is derived as follows:

R0
i−1

∂

∂θi







aici
aisi
di






= R0

i−1







−aisi
aici
0






θ̇i (5.77)

= R0
i−1S(kθ̇i)O

i−1

i (5.78)

= R0
i−1S(kθ̇i)

(

R0
i−1

)T
R0

i−1O
i−1

i (5.79)

= S(R0
i−1kθ̇i)R

0
i−1O

i−1

i (5.80)

= θ̇iS(z0
i−1)R

0
i−1O

i−1

i . (5.81)

Equation (5.78) follows by straightforward computation. Thus

Jvi
= zi−1 × (On −Oi−1), (5.82)

in which we have, following our convention, omitted the zero superscripts.
Figure 5.1 illustrates a second interpretation of (5.82). As can be seen in
the figure, On−Oi−1 = r and zi−1 = ω in the familiar expression v = ω×r.

Combining the Angular and Linear Jacobians

As we have seen in the preceding section, the upper half of the Jacobian Jv
is given as

Jv = [Jv1 · · ·Jvn ] (5.83)
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Oi−1

y0

x0

z0

On

θi

d0

i−1

r ≡ di−1

n

ω ≡ zi−1

Figure 5.1: Motion of the end-effector due to link i.

where the i-th column Jvi
is

Jvi
= zi−1 × (On −Oi−1) (5.84)

if joint i is revolute and

Jvi
= zi−1 (5.85)

if joint i is prismatic.
The lower half of the Jacobian is given as

Jω = [Jω1 · · ·Jωn ] (5.86)

where the i-th column Jωi
is

Jωi
= zi−1 (5.87)

if joint i is revolute and

Jωi
= 0 (5.88)

if joint i is prismatic.
Now putting the upper and lower halves of the Jacobian together we

have shown that the Jacobian for an n-link manipulator is of the form

J = [J1J2 · · ·Jn] (5.89)
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where the i-th column Ji is given by

Ji =

[

zi−1 × (On −Oi−1)
zi−1

]

(5.90)

if joint i is revolute and

Ji =

[

zi−1

0

]

(5.91)

if joint i is prismatic.

The above formulas make the determination of the Jacobian of any ma-
nipulator simple since all of the quantities needed are available once the
forward kinematics are worked out. Indeed the only quantities needed to
compute the Jacobian are the unit vectors zi and the coordinates of the
origins O1, . . . , On. A moment’s reflection shows that the coordinates for zi
w.r.t. the base frame are given by the first three elements in the third col-
umn of T 0

i while Oi is given by the first three elements of the fourth column
of T 0

i . Thus only the third and fourth columns of the T matrices are needed
in order to evaluate the Jacobian according to the above formulas.

The above procedure works not only for computing the velocity of the
end-effector but also for computing the velocity of any point on the manip-
ulator. This will be important in Chapter 6 when we will need to compute
the velocity of the center of mass of the various links in order to derive the
dynamic equations of motion.

Example 5.5 Consider the three-link planar manipulator of Figure 5.2.
Suppose we wish to compute the linear velocity v and the angular velocity ω

v

ω

z0
x0

z1

x1

y0

y1

O
c

Figure 5.2: Finding the velocity of link 2 of a 3-link planar robot.
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of the center of link 2 as shown. In this case we have that
[

v

ω

]

= [J1 J2 J3]q̇ (5.92)

where the columns of the Jacobian are determined using the above formula
with Oc in place of On. Thus we have

J1 = z0 × (Oc −O0) (5.93)

J2 = z1 × (Oc −O1)

and

J3 = 0

since the velocity of the second link is unaffected by motion of link 31. Note
that in this case the vector Oc must be computed as it is not given directly
by the T matrices (Problem 5-1).
⋄

5.7 Examples

Example 5.6 Consider the two-link planar manipulator of Example 3.1.
Since both joints are revolute the Jacobian matrix, which in this case is 6×2,
is of the form

J(q) =

[

z0 × (O2 −O0) z1 × (O2 −O1)
z0 z1

]

. (5.94)

The various quantities above are easily seen to be

O0 =







0
0
0






O1 =







a1c1
a1s1

0






O2 =







a1c1 + a2c12
a1s1 + a2s12

0






(5.95)

z0 = z1 =







0
0
1






. (5.96)

1Note that we are treating only kinematic effects here. Reaction forces on link 2 due to

the motion of link 3 will influence the motion of link 2. These dynamic effects are treated

by the methods of Chapter 6.
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Performing the required calculations then yields

J =



















−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

0 0
0 0
0 0
1 1



















. (5.97)

It is easy to see how the above Jacobian compares with the expression
(1.1) derived in Chapter 1. The first two rows of (5.96) are exactly the 2×2
Jacobian of Chapter 1 and give the linear velocity of the origin O2 relative
to the base. The third row in (5.97) is the linear velocity in the direction of
z0, which is of course always zero in this case. The last three rows represent
the angular velocity of the final frame, which is simply a rotation about the
vertical axis at the rate θ̇1 + θ̇2.
⋄
Example 5.7 Stanford Manipulator Consider the Stanford manipulator
of Example 3.3.5 with its associated Denavit-Hartenberg coordinate frames.
Note that joint 3 is prismatic and that O3 = O4 = O5 as a consequence of
the spherical wrist and the frame assignment. Denoting this common origin
by O we see that the Jacobian is of the form

J =

[

z0 × (O6 −O0) z1 × (O6 −O1) z2 z3 × (O6 −O) z4 × (O6 −O) z5 × (O6 −O)
z0 z1 0 z3 z4 z5

]

.

Now, using the A-matrices given by the expressions (3.35)-(3.40) and
the T -matrices formed as products of the A-matrices, these quantities are
easily computed as follows: First, Oj is given by the first three entries of the
last column of T 0

j = A1 · · ·Aj, with O0 = (0, 0, 0)T = O1. The vector zj is
given as

zj = R0
jk (5.98)

where R0
j is the rotational part of T 0

j . Thus it is only necessary to compute
the matrices T 0

j to calculate the Jacobian. Carrying out these calculations
one obtains the following expressions for the Stanford manipulator:

O6 = (dx, dy, dz)
T =







c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5)
s1s2d3 − c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

c2d3 + d6(c2c5 − c4s2s5)






(5.99)

O3 =







c1s2d3 − s1d2

s1s2d3 + c1d2

c2d3






. (5.100)
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The zi are given as

z0 =







0
0
1






z1 =







−s1
c1
0






(5.101)

z2 =







c1s2
s1s2
c2






z3 =







c1s2
s1s2
c2






(5.102)

z4 =







−c1c2s4 − s1c4
−s1c2s4 + c1c4

s2s4






(5.103)

z5 =







c1c2c4s5 − s1s4s5 + c1s2c5
s1c2c4s5 + c1s4s5 + s1s2c5

−s2c4s5 + c2c5






. (5.104)

The Jacobian of the Stanford Manipulator is now given by combining
these expressions according to the given formulae (Problem 7).

⋄
Example 5.8 SCARA Manipulator We will now derive the Jacobian of
the SCARA manipulator of Example 3.3.6. This Jacobian is a 6× 4 matrix
since the SCARA has only four degrees-of-freedom. As before we need only
compute the matrices T 0

j = A1 . . . Aj, where the A-matrices are given by
(3.45)-(3.48).

Since joints 1,2, and 4 are revolute and joint 3 is prismatic, and since
O4 −O3 is parallel to z3 (and thus, z3 × (O4 −O3) = 0), the Jacobian is of
the form

J =

[

z0 × (O4 −O0) z1 × (O4 −O1) z2 0
z0 z1 0 z3

]

. (5.105)

Performing the indicated calculations, one obtains

O1 =







a1c1
a1s1

0






O2 =







a1c1 + a2c12
a1s1 + a2s12

0






(5.106)

O4 =







a1c1 + a2c12
a1s2 + a2s12
d3 − d4






. (5.107)
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Similarly z0 = z1 = k, and z2 = z3 = −k. Therefore the Jacobian of the
SCARA Manipulator is

J =



















−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
0 0 0 0
0 0 0 0
1 1 0 −1



















. (5.108)

⋄

5.8 Singularities

The 6 × n Jacobian J(q) defines a mapping

Ẋ = J(q)q̇ (5.109)

between the vector q̇ of joint velocities and the vector Ẋ = (v,ω)T of end-
effector velocities. Infinitesimally this defines a linear transformation

dX = J(q)dq (5.110)

between the differentials dq and dX. These differentials may be thought of
as defining directions in IR6, and IRn, respectively.

Since the Jacobian is a function of the configuration q, those configu-
rations for which the rank of J decreases are of special significance. Such
configurations are called singularities or singular configurations. Iden-
tifying manipulator singularities is important for several reasons.

1. Singularities represent configurations from which certain directions of
motion may be unattainable.

2. At singularities, bounded end-effector velocities may correspond to un-
bounded joint velocities.

3. At singularities, bounded end-effector forces and torques may correspond
to unbounded joint torques. (We will see this in Chapter ??).

4. Singularities usually (but not always) correspond to points on the bound-
ary of the manipulator workspace, that is, to points of maximum reach
of the manipulator.
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5. Singularities correspond to points in the manipulator workspace that may
be unreachable under small perturbations of the link parameters, such
as length, offset, etc.

6. Near singularities there will not exist a unique solution to the inverse
kinematics problem. In such cases there may be no solution or there
may be infinitely many solutions.

Example 5.9 Consider the two-dimensional system of equations

dX = Jdq =

[

1 1
0 0

]

dq (5.111)

that corresponds to the two equations

dx = dq1 + dq2 (5.112)

dy = 0. (5.113)

In this case the rank of J is one and we see that for any values of the
variables dq1 and dq2 there is no change in the variable dy. Thus any vector
dX having a nonzero second component represents an unattainable direction
of instantaneous motion.

⋄

5.8.1 Decoupling of Singularities

We saw in Chapter 3 that a set of forward kinematic equations can be de-
rived for any manipulator by attaching a coordinate frame rigidly to each
link in any manner that we choose, computing a set of homogeneous trans-
formations relating the coordinate frames, and multiplying them together
as needed. The D-H convention is merely a systematic way to do this.
Although the resulting equations are dependent on the coordinate frames
chosen, the manipulator configurations themselves are geometric quantities,
independent of the frames used to describe them. Recognizing this fact al-
lows us to decouple the determination of singular configurations, for those
manipulators with spherical wrists, into two simpler problems. The first
is to determine so-called arm singularities, that is, singularities resulting
from motion of the arm, which consists of the first three or more links, while
the second is to determine the wrist singularities resulting from motion
of the spherical wrist.
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For the sake of argument, suppose that n = 6, that is, the manipulator
consists of a 3-DOF arm with a 3-DOF spherical wrist. In this case the
Jacobian is a 6 × 6 matrix and a configuration q is singular if and only if

det J(q) = 0. (5.114)

If we now partition the Jacobian J into 3 × 3 blocks as

J = [JP | JO] =

[

J11

J21

J12

J22

]

(5.115)

then, since the final three joints are always revolute

JO =

[

z3 × (O6 −O3) z4 × (O6 −O4) z5 × (O6 −O5)
z3 z4 z5

]

.(5.116)

Since the wrist axes intersect at a common point O, if we choose the
coordinate frames so that O3 = O4 = O5 = O6 = O, then JO becomes

JO =

[

0 0 0
z3 z4 z5

]

(5.117)

and the i-th column Ji of Jp is

Ji =

[

zi−1 × (O −Oi−1)
zi−1

]

(5.118)

if joint i is revolute and

Ji =

[

zi−1

0

]

(5.119)

if joint i is prismatic. In this case the Jacobian matrix has the block trian-
gular form

J =

[

J11 0
J21 J22

]

(5.120)

with determinant

det J = detJ11 det J22 (5.121)
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where J11 and J22 are each 3× 3 matrices. J11 has i-th column zi−1 × (O−
Oi−1) if joint i is revolute, and zi−1 if joint i is prismatic, while

J22 = [z3 z4 z5]. (5.122)

Therefore the set of singular configurations of the manipulator is the
union of the set of arm configurations satisfying detJ11 = 0 and the set
of wrist configurations satisfying detJ22 = 0. Note that this form of the
Jacobian does not necessarily give the correct relation between the velocity
of the end-effector and the joint velocities. It is intended only to simplify
the determination of singularities.

5.8.2 Wrist Singularities

We can now see from (5.122) that a spherical wrist is in a singular configu-
ration whenever the vectors z3, z4 and z5 are linearly dependent. Referring
to Figure 5.3 we see that this happens when the joint axes z3 and z5 are

z4

θ6θ4

θ5 = 0

z3 z5

Figure 5.3: Spherical wrist singularity.

collinear. In fact, whenever two revolute joint axes anywhere are collinear,
a singularity results since an equal and opposite rotation about the axes
results in no net motion of the end-effector. This is the only singularity of
the spherical wrist, and is unavoidable without imposing mechanical limits
on the wrist design to restrict its motion in such a way that z3 and z5 are
prevented from lining up.

5.8.3 Arm Singularities

In order to investigate arm singularities we need only to compute J11 ac-
cording to (5.118) and (5.119), which is the same formula derived previously
with the wrist center O in place of O6.
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Example 5.10 Elbow Manipulator Singularities Consider the three-
link articulated manipulator with coordinate frames attached as shown in
Figure 5.4. It is left as an exercise (Problem 2) to show that

z2

x0

z0

x1 x2

z1

y1 y2

y0

O
c

d0

c

Figure 5.4: Elbow manipulator.

J11 =







−a2s1c2 − a3s1c23 −a2s2c1 − a3s23c1 −a3c1s23
a2c1c2 + a3c1c23 −a2s1s2 − a3s1s23 −a3s1s23

0 a2c2 + a3c23 a3c23






(5.123)

and that the determinant of J11 is

det J11 = a2a3s3(a2c2 + a3c23). (5.124)

We see from (5.124) that the elbow manipulator is in a singular config-
uration whenever

s3 = 0, that is, θ3 = 0 or π (5.125)

and whenever

a2c2 + a3c23 = 0. (5.126)

The situation of (5.125) is shown in Figure 5.5 and arises when the elbow
is fully extended or fully retracted as shown. The second situation (5.126)
is shown in Figure 5.6. This configuration occurs when the wrist center in-
tersects the axis of the base rotation, z0. As we saw in Chapter 4, there
are infinitely many singular configurations and infinitely many solutions to
the inverse position kinematics when the wrist center is along this axis. For
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θ3 = 0
◦ θ3 = 180

◦

Figure 5.5: Elbow singularities of the elbow manipulator.

z0

θ1

Figure 5.6: Singularity of the elbow manipulator with no offsets.

an elbow manipulator with an offset, as shown in Figure 5.7, the wrist cen-
ter cannot intersect z0, which corroborates our earlier statement that points
reachable at singular configurations may not be reachable under arbitrarily
small perturbations of the manipulator parameters, in this case an offset in
either the elbow or the shoulder.

⋄

Example 5.11 Spherical Manipulator Consider the spherical arm of
Figure 5.8. This manipulator is in a singular configuration when the wrist
center intersects z0 as shown since, as before, any rotation about the base
leaves this point fixed.

⋄
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z0

d

Figure 5.7: Elbow manipulator with shoulder offset.

Example 5.12 SCARA Manipulator We have already derived the com-
plete Jacobian for the the SCARA manipulator. This Jacobian is simple
enough to be used directly rather than deriving the modified Jacobian from
this section. Referring to Figure 5.9 we can see geometrically that the only
singularity of the SCARA arm is when the elbow is fully extended or fully
retracted. Indeed, since the portion of the Jacobian of the SCARA governing
arm singularities is given as

J11 =







α1 α3 0
α2 α4 0
0 0 −1






(5.127)

where

α1 = −a1s1 − a2s12 (5.128)

α2 = a1c1 + a2c12

α3 = −a1s12

α4 = a1c12 (5.129)

we see that the rank of J11 will be less than three precisely whenever α1α4 −
α2α3 = 0. It is easy to compute this quantity and show that it is equivalent
to (Problem 4)

s2 = 0, which implies θ2 = 0, π. (5.130)
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θ1

z0

Figure 5.8: Singularity of spherical manipulator with no offsets.

⋄

5.9 Inverse Velocity and Acceleration

It is perhaps a bit surprising that the inverse velocity and acceleration rela-
tionships are conceptually simpler than inverse position. Recall from (5.109)
that the joint velocities and the end-effector velocities are related by the Ja-
cobian as

Ẋ = J(q)q̇. (5.131)

Thus the inverse velocity problem becomes one of solving the system of
linear equations (5.131), which is conceptually simple.

Differentiating (5.131) yields the acceleration equations

Ẍ = J(q)q̈ +

(

d

dt
J(q)

)

q̇. (5.132)

Thus, given a vector Ẍ of end-effector accelerations, the instantaneous
joint acceleration vector q is given as a solution of

b = J(q)q̈ (5.133)
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z0

z1 z2

θ2 = 0
◦

Figure 5.9: SCARA manipulator singularity.

where

b = Ẍ −
d

dt
J(q)q̇ (5.134)

For 6-DOF manipulators the inverse velocity and acceleration equations
can therefore be written as

q̇ = J(q)−1Ẋ (5.135)

and

q̈ = J(q)−1b (5.136)

provided detJ(q) 6= 0. In the next section, we address the case of manipu-
lators with more than 6-DOF.

5.10 Redundant Robots and Manipulability

In this section we briefly address the topic of redundant manipulators. Infor-
mally, a redundant manipulator is one that is equipped with more internal
degrees of freedom than are required to perform a specified task. For exam-
ple, a three link planar arm is redundant for the task of positioning in the
plane. As we have briefly seen in Chapter 4, in such cases there in no unique
solution for the inverse kinematics problem. Further, the Jacobian matrix
for a redundant manipulator is not square, and thus cannot be inverted to
solve the inverse velocity problem.
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In this section, we begin by giving a brief and general introduction to
the subject of redundant manipulators. We then turn our attention to the
inverse velocity problem. To address this problem, we will introduce the
concept of a pseudoinverse and the Singular Value Decomposition. We end
the section by introducing manipulability, a measure that can be used to
quantify the quality of the internal configuration of a manipulator, and can
therefore be used in an optimization framework to aid in the solution for
the inverse kinematics problem.

5.10.1 Redundant Manipulators

A precise definition of what is meant by the term redundant requires that
we specify a task, and the number of degrees of freedom required to perform
that task. In previous chapters, we have dealt primarily with positioning
tasks. In these cases, the task was determined by specifying the position,
orientation or both for the end effector or some tool mounted at the end
effector. For these kinds of positioning tasks, the number of degrees of
freedom for the task is equal to the number of parameters required to specify
the position and orientation information. For example, if the task involves
positioning the end effector in a 3D workspace, then the task can be specified
by an element of ℜ3 × SO(3). As we have seen in Chapter 2, ℜ3 × SO(3)
can be parameterized by (x, y, z, φ, θ, ψ), i.e., using six parameters. Thus,
for this task, the task space is six-dimensional. A manipulator is said to
be redundant when its number of internal degrees of freedom (or joints) is
greater than the dimension of the task space. Thus, for the 3D position
and orientation task, any manipulator with more than six joints would be
redundant.

A simpler example is a three-link planar arm performing the task of
positioning the end effector in the plane. Here, the task can be specified by
(x, y) ∈ ℜ2, and therefore the task space is two-dimensional. The forward
kinematic equations for this robot are given by

x = a1C1 + a2C12 + a3C123

y = a1S1 + a2S12 + a3S123.

Clearly, since there are three variables (θ1, θ2, θ3) and only two equations, it
is not possible to solve uniquely for θ1, θ2, θ3 given a specific (x, y).

The Jacobian for this manipulator is given by
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J =

[

−a1S1 − a2S12 −a2S12 −a3S123

a1C1 + a2C12 a2C12 a3C123

]

. (5.137)

When using the relationship ẋ = Jq̇ to for q̇, we have a system of two linear
equations in three unknowns. Thus there are also infinitely many solutions
to this system, and the inverse velocity problem cannot be solved uniquely.
We now turn our attention to the specifics of dealing with these inverse
problems.

5.10.2 The Inverse Velocity Problem for Redundant Manip-
ulators

We have seen in Section 5.9 that the inverse velocity problem is easily solved
when the Jacobian is square with nonzero determinant. However, when
the Jacobian is not square, as is the case for redundant manipulators, the
method of Section 5.9 cannot be used, since a nonsquare matrix cannot be
inverted. To deal with the case when m < n, we use the following result
from linear algebra.

Proposition: For J ∈ ℜm×n, if m < n and rank J = m, then (JJT )−1

exists.

In this case (JJT ) ∈ ℜm×m, and has rank m. Using this result, we can
regroup terms to obtain

(JJT )(JJT )−1 = I

J
[

JT (JJT )−1
]

= I

JJ+ = I.

Here, J+ = JT (JJT )−1 is called a right pseudoinverse of J, since JJ+ = I.
Note that, J+J ∈ ℜn×n, and that in general, J+J 6= I (recall that matrix
multiplication is not commutative).

It is now easy to demonstrate that a solution to (5.131) is given by

q̇ = J+ẋ + (I − J+J)b (5.138)

in which b ∈ ℜn is an arbitrary vector. To see this, multiply this solution
by J:

Jq̇ = J [J+ẋ + (I − J+J)b]

= JJ+ẋ + J(I − J+J)b
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= JJ+ẋ + (J − JJ+J)b

= ẋ + (J − J)b

= ẋ.

In general, for m < n, (I − J+J) 6= 0, and all vectors of the form
(I−J+J)b lie in the null space of J, i.e., if q̇n is a joint velocity vector such
that q̇n = (I− J+J)b, then when the joints move with velocity q̇n, the end
effector will remain fixed since Jq̇n = 0. Thus, if q̇ is a solution to (5.131),
then so is q̇ + q̇n with q̇n = (I− J+J)b, for any value of b. If the goal is to
minimize the resulting joint velocities, we choose b = 0. To see this, apply
the triangle inequality to obtain

|| q̇ || = || J+ẋ + (I − J+J)b ||

≤ || J+ẋ || + || (I − J+J)b ||.

5.10.3 Singular Value Decomposition (SVD)

For robots that are not redundant, the Jacobian matrix is square, and we
can use tools such as the determinant, eigenvalues and eigenvectors to ana-
lyze its properties. However, for redundant robots, the Jacobian matrix is
not square, and these tools simply do not apply. Their generalizations are
captured by the Singular Value Decomposition (SVD) of a matrix, which we
now introduce.

As we described above, for J ∈ ℜm×n, we have JJT ∈ ℜm×m. This
square matrix has eigenvalues and eigenvectors that satisfy

JJTui = λiui (5.139)

in which λi and ui are corresponding eigenvalue and eigenvector pairs for
JJT . We can rewrite this equation to obtain

JJTui − λiui = 0

(JJT − λiI)ui = 0. (5.140)

The latter equation implies that the matrix (JJT − λiI) is singular, and we
can express this in terms of its determinant as

det(JJT − λiI) = 0. (5.141)

We can use (5.141) to find the eigenvalues λ1 ≥ λ2 · · · ≥ λm ≥ 0 for JJT .
The singular values for the Jacobian matrix J are given by the square roots
of the eigenvalues of JJT ,

σi =
√

λi. (5.142)
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The singular value decomposition of the matrix J is then given by

J = UΣVT , (5.143)

in which

U = [u1u2 . . .um] , V = [v1v2 . . .vn] (5.144)

are orthogonal matrices, and Σ ∈ Rm×n.

Σ =















σ1

σ2

.
.
σm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0















. (5.145)

We can compute the SVD of J as follows. We begin by finding the
singular values, σi, of J using (5.141) and (5.142). These singular values
can then be used to find the eigenvectors u1, · · ·um that satisfy

JJTui = σ2
i ui. (5.146)

These eigenvectors comprise the matrix U = [u1u2 . . .um]. The system of
equations (5.146) can be written as

JJTU = UΣ2
m (5.147)

if we define the matrix Σm as

Σm =















σ1

σ2

.
.
σm















.

Now, define

Vm = JTUΣ−1
m (5.148)

and let V be any orthogonal matrix that satisfies V = [Vm | Vn−m] (note
that here Vn−m contains just enough columns so that the matrix V is an
n×n matrix). It is a simple matter to combine the above equations to verify
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(5.143):

UΣVT = U [Σm | 0]

[

VT
m

VT
n−m

]

(5.149)

= UΣmVT
m (5.150)

= UΣm

(

JTUΣ−1
m

)T
(5.151)

= UΣm(Σ−1
m )TUTJ (5.152)

= UΣmΣ−1
m UTJ (5.153)

= UUTJ (5.154)

= J. (5.155)

Here, (5.149) follows immediately from our construction of the matrices
U, V and Σm. Equation (5.151) is obtained by substituting (5.148) into
(5.150). Equation (5.153) follows because Σ−1

m is a diagonal matrix, and
thus symmetric. Finally, (5.155) is obtained using the fact that UT = U−1,
since U is orthogonal.

It is a simple matter construct the right pseudoinverse of J using the
SVD,

J+ = VΣ+UT

in which

Σ+ =















σ−1
1

σ−1
2

.
.
σ−1
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0















T

.

5.10.4 Manipulability

For a specific value of q, the Jacobian relationship defines the linear system
given by ẋ = Jq̇. We can think of J a scaling the input, q̇, to produce
the output, ẋ. It is often useful to characterize quantitatively the effects of
this scaling. Often, in systems with a single input and a single output, this
kind of characterization is given in terms of the so called impulse response
of a system, which essentially characterizes how the system responds to
a unit input. In this multidimensional case, the analogous concept is to
characterize the output in terms of an input that has unit norm. Consider
the set of all robot tool velocities q̇ such that

‖q̇‖ = (q̇21 + q̇22 + . . . q̇2m)1/2 ≤ 1. (5.156)
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If we use the minimum norm solution q̇ = J+ẋ, we obtain

‖q̇‖ = q̇T q̇

= (J+ẋ)TJ+ẋ

= ẋT (J+)TJ+ẋ

= ẋT (JT (JJT )−1)TJT (JJT )−1ẋ

= ẋT [(JJT )−1]TJJT (JJT )−1ẋ

= ẋT (JJT )−1ẋ ≤ 1. (5.157)

This final inequality gives us a quantitative characterization of the scaling
that is effected by the Jacobian. In particular, if the manipulator Jacobian
is full rank, i.e., rank J = m, then (5.157) defines an m-dimensional ellipsoid
that is known as the manipulability ellipsoid. If the input (i.e., joint velocity)
vector has unit norm, then the output (i.e., task space velocity) will lie within
the ellipsoid given by (5.157). We can more easily see that (5.157) defines
an ellipsoid by replacing J by its SVD to obtain

ẋT (JJT )−1ẋT = ẋT [UΣVT (UΣVT )T ]−1ẋ

= ẋT [UΣVTVΣTUT ]−1ẋ

= ẋT [UΣΣTUT ]−1ẋ

= ẋT [UΣ2
mUT ]−1ẋ

= ẋT [UΣ−2
m UT ]ẋ

= (ẋTU)Σ−2
m (UT ẋ)

= (UT ẋ)TΣ−2
m (UT ẋ) (5.158)

in which

Σ−2
m =















σ−2
1

σ−2
2

.
.
σ−2
m















.

If we make the substation w = UT ẋ, then (5.158) can be written as

wTΣ−2
m w =

∑

σ−2
i w2

i ≤ 1 (5.159)

and it is clear that this is the equation for an axis-aligned ellipse in a new
coordinate system that is obtained by rotation according to the orthogonal
matrix U. In the original coordinate system, the axes of the ellipsoid are
given by the vectors σiui. The volume of the ellipsoid is given by

volume = Kσ1σ2 · · ·σm,
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in which K is a constant that depends only on the dimension, m, of the
ellipsoid. The manipulability measure, as defined by Yoshikawa [?], is given
by

ω = σ1σ2 · · ·σm. (5.160)

Note that the constant K is not included in the definition of manipulability,
since it is fixed once the task has been defined (i.e., once the dimension of
the task space has been fixed).

Now, consider the special case that the robot is not redundant, i.e.,
J ∈ ℜm×m. Recall that the determinant of a product is equal to the product
of the determinants, and that a matrix and its transpose have the same
determinant. Thus, we have

det JJT = det J det JT

= det J det J

= (λ1λ2 · · ·λm)(λ1λ2 · · ·λm)

= λ2
1λ

2
2 · · ·λ

2
m (5.161)

in which λ1 ≥ λ2 · · · ≤ λm are the eigenvalues of J. This leads to

ω =
√

det JJT = |λ1λ2 · · ·λm| = |det J|. (5.162)

The manipulability, ω, has the following properties.

• In general, ω = 0 holds if and only if rank(J) < m, (i.e., when J is not
full rank).

• Suppose that there is some error in the measured velocity, ∆ẋ. We
can bound the corresponding error in the computed joint velocity, ∆q̇,
by

(σ1)
−1 ≤

||∆q̇||

||∆ẋ||
≤ (σm)−1. (5.163)

Example 5.13 Two-link Planar Arm. We can use manipulability to
determine the optimal configurations in which to perform certain tasks. In
some cases it is desirable to perform a task in the configuration for which
the end effector has the maximum dexterity. We can use manipulability as
a measure of dexterity. Consider the two-link planar arm and the task of
positioning in the plane. For the two link arm, the Jacobian is given by

J =

[

−a1S1 − a2S12 −a2S12

a1C1 + a2C12 a2C12

]

. (5.164)
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and the manipulability is given by

ω = |det J| = a1a2|S2|

Thus, for the two-link arm, the maximum manipulability is obtained for
θ2 = ±π/2.

Manipulability can also be used to aid in the design of manipulators. For
example, suppose that we wish to design a two-link planar arm whose total
link length, a1 +a2, is fixed. What values should be chosen for a1 and a2? If
we design the robot to maximize the maximum manipulability, the we need to
maximize ω = a1a2|S2|. We have already seen that the maximum is obtained
when θ2 = ±π/2, so we need only find a1 and a2 to maximize the product
a1a2. This is achieved when a1 = a2. Thus, to maximize manipulability, the
link lengths should be chosen to be equal.

⋄

5.11 Problems

1. For the three-link planar manipulator of Example 5.5, compute the
vector Oc and derive the Jacobian (5.92).

2. Compute the Jacobian J11 for the 3-link elbow manipulator of Example
5.10 and show that it agrees with (5.123). Show that the determinant
of this matrix agrees with (5.124).

3. Compute the Jacobian J11 for the three-link spherical manipulator of
Example 5.11.

4. Show from (5.128) that the singularities of the SCARA manipulator
are given by (5.130).

5. Find the 6 × 3 Jacobian for the three links of the cylindrical manipu-
lator of Figure 3.7. Show that there are no singular configurations for
this arm. Thus the only singularities for the cylindrical manipulator
must come from the wrist.

6. Repeat Problem 5 for the cartesian manipulator of Figure 3.17.

7. Complete the derivation of the Jacobian for the Stanford manipulator
from Example 5.7.

8. Verify Equation (5.9) by direct calculation.
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9. Prove assertion (5.10) that R(a × b) = Ra ×Rb, for R ∈ S0(3).

10. Suppose that a = (1,−1, 2)T and that R = Rx,90. Show by direct
calculation that

RS(a)RT = S(Ra).

11. Given R0
1 = Rx,θRy,φ, compute

∂R0
1

∂φ . Evaluate
∂R0

1
∂φ at θ = π

2 , φ = φ
2 .

12. Use Equation (2.71) to show that

Rk,θ = I + S(k) sin(θ) + S2(k) vers(θ).

13. Verify (5.25) by direct calculation.

14. Show that S(k)3 = −S(k). Use this and Problem 12 to verify Equa-
tion (5.26).

15. Given any square matrix A, the exponential of A is a matrix defined
as

eA = I +A+
1

2
A2 +

1

3!
A3 + ·

Given S ∈ SS(3) show that eS ∈ SO(3).

[Hint: Verify the facts that eAeB = eA+B provided that A and B
commute, that is, AB = BA, and also that det(eA) = eTr(A).]

16. Show that Rk,θ = eS(k)θ.

[Hint: Use the series expansion for the matrix exponential together
with Problems 12 and 14. Alternatively use the fact that Rk,θ satisfies
the differential equation

dR

dθ
= S(k)R.

17. Use Problem 16 to show the converse of Problem 15, that is, if R ∈
SO(3) then there exists S ∈ SS(3) such that R = eS .

18. Given the Euler angle transformation

R = Rz,ψRy,θRz,φ
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show that d
dtR = S(ω)R where

ω = {cψsθφ̇− sψ θ̇}i + {sψsθφ̇+ cψ θ̇}j + {[̇si+ cθφ̇}k.

The components of i, j,k, respectively, are called the nutation, spin,
and precession.

19. Repeat Problem 18 for the Roll-Pitch-Yaw transformation. In other
words, find an explicit expression for ω such that d

dtR = S(ω)R, where
R is given by (2.65).

20. Two frames o0x0y0z0 and o1x1y1z1 are related by the homogeneous
transformation

H =











0 −1 0 1
1 0 0 −1
0 0 1 0
0 0 0 1











.

A particle has velocity v1(t) = (3, 1, 0)T relative to frame o1x1y1z1.
What is the velocity of the particle in frame o0x0y0z0?

21. Three frames o0x0y0z0 and o1x1y1z1, and o2x2y2z2 are given below. If
the angular velocities ω0

1 and ω1
2 are given as

ω0
1 =







1
1
0






; ω1

2 =







2
0
1







what is the angular velocity ω0
2 at the instant when

R0
1 =







1 0 0
0 0 −1
0 1 0






.


