
Chapter 4

INVERSE KINEMATICS

In the previous chapter we showed how to determine the end-effector po-
sition and orientation in terms of the joint variables. This chapter is con-
cerned with the inverse problem of finding the joint variables in terms of
the end-effector position and orientation. This is the problem of inverse
kinematics, and it is, in general, more difficult than the forward kinematics
problem.

In this chapter, we begin by formulating the general inverse kinematics
problem. Following this, we describe the principle of kinematic decoupling
and how it can be used to simplify the inverse kinematics of most modern
manipulators. Using kinematic decoupling, we can consider the position and
orientation problems independently. We describe a geometric approach for
solving the positioning problem, while we exploit the Euler angle parame-
terization to solve the orientation problem.

4.1 The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given
a 4 × 4 homogeneous transformation

H =

[

R O
0 1

]

∈ SE(3) (4.1)

with R ∈ SO(3), find (one or all) solutions of the equation

T 0

n
(q1, . . . , qn) = H (4.2)

where

T 0

n
(q1, . . . , qn) = A1(q1) · · ·An(qn). (4.3)
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104 CHAPTER 4. INVERSE KINEMATICS

Here, H represents the desired position and orientation of the end-effector,
and our task is to find the values for the joint variables q1, . . . , qn so that
T 0

n
(q1, . . . , qn) = H.
Equation (4.2) results in twelve nonlinear equations in n unknown vari-

ables, which can be written as

Tij(q1, . . . , qn) = hij , i = 1, 2, 3, j = 1, . . . , 4 (4.4)

where Tij , hij refer to the twelve nontrivial entries of T 0

n
and H, respectively.

(Since the bottom row of both T 0

n
and H are (0,0,0,1), four of the sixteen

equations represented by (4.2) are trivial.)

Example 4.1
Recall the Stanford manipulator of Example 3.3.5. Suppose that the de-

sired position and orientation of the final frame are given by

H =











r11 r12 r13 Ox

r21 r22 r23 Oy

r31 r32 r33 Oz

0 0 0 1











. (4.5)

To find the corresponding joint variables θ1, θ2, d3, θ4, θ5, and θ6 we must
solve the following simultaneous set of nonlinear trigonometric equations
(cf. (3.43) and (3.44)):

c1[c2(c4c5c6 − s4s6) − s2s5c6] − s1(s4c5c6 + c4s6) = r11

s1[c2(c4c5c6 − s4s6) − s2s5c6] + c1(s4c5c6 + c4s6) = r21

−s2(c4c5c6 − s4s6) − c2s5s6 = r31

c1[−c2(c4c5s6 + s4c6) + s2s5s6] − s1(−s4c5s6 + c4c6) = r12

s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6) = r22

s2(c4c5s6 + s4c6) + c2s5s6 = r32

c1(c2c4s5 + s2c5) − s1s4s5 = r13

s1(c2c4s5 + s2c5) + c1s4s5 = r23

−s2c4s5 + c2c5 = r33

c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5) = Ox

s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2) = Oy

c2d3 + d6(c2c5 − c4s2s5) = Oz.

⋄



4.1. THE GENERAL INVERSE KINEMATICS PROBLEM 105

The equations in the preceding example are, of course, much too diffi-
cult to solve directly in closed form. This is the case for most robot arms.
Therefore, we need to develop efficient and systematic techniques that ex-
ploit the particular kinematic structure of the manipulator. Whereas the
forward kinematics problem always has a unique solution that can be ob-
tained simply by evaluating the forward equations, the inverse kinematics
problem may or may not have a solution. Even if a solution exists, it may
or may not be unique. Furthermore, because these forward kinematic equa-
tions are in general complicated nonlinear functions of the joint variables,
the solutions may be difficult to obtain even when they exist.

In solving the inverse kinematics problem we are most interested in find-
ing a closed form solution of the equations rather than a numerical solution.
Finding a closed form solution means finding an explicit relationship:

qk = fk(h11, . . . , h34), k = 1, . . . , n. (4.6)

Closed form solutions are preferable for two reasons. First, in certain ap-
plications, such as tracking a welding seam whose location is provided by
a vision system, the inverse kinematic equations must be solved at a rapid
rate, say every 20 milliseconds, and having closed form expressions rather
than an iterative search is a practical necessity. Second, the kinematic equa-
tions in general have multiple solutions. Having closed form solutions allows
one to develop rules for choosing a particular solution among several.

The practical question of the existence of solutions to the inverse kine-
matics problem depends on engineering as well as mathematical consider-
ations. For example, the motion of the revolute joints may be restricted
to less than a full 360 degrees of rotation so that not all mathematical so-
lutions of the kinematic equations will correspond to physically realizable
configurations of the manipulator. We will assume that the given position
and orientation is such that at least one solution of (4.2) exists. Once a solu-
tion to the mathematical equations is identified, it must be further checked
to see whether or not it satisfies all constraints on the ranges of possible
joint motions. For our purposes here we henceforth assume that the given
homogeneous matrix H in (4.2) corresponds to a configuration within the
manipulator’s workspace with an attainable orientation. This then guar-
antees that the mathematical solutions obtained correspond to achievable
configurations.
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4.2 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns
out that for manipulators having six joints, with the last three joints inter-
secting at a point (such as the Stanford Manipulator above), it is possible to
decouple the inverse kinematics problem into two simpler problems, known
respectively, as inverse position kinematics, and inverse orientation
kinematics. To put it another way, for a six-DOF manipulator with a
spherical wrist, the inverse kinematics problem may be separated into two
simpler problems, namely first finding the position of the intersection of the
wrist axes, hereafter called the wrist center, and then finding the orienta-
tion of the wrist.

For concreteness let us suppose that there are exactly six degrees-of-
freedom and that the last three joint axes intersect at a point Oc. We express
(4.2) as two sets of equations representing the rotational and positional
equations

R0

6
(q1, . . . , q6) = R (4.7)

O0

6(q1, . . . , q6) = O (4.8)

where O and R are the desired position and orientation of the tool frame,
expressed with respect to the world coordinate system. Thus, we are given
O and R, and the inverse kinematics problem is to solve for q1, . . . , q6.

The assumption of a spherical wrist means that the axes z3, z4, and
z5 intersect at Oc and hence the origins O4 and O5 assigned by the DH-
convention will always be at the wrist center Oc. Often O3 will also be at
Oc, but this is not necessary for our subsequent development. The important
point of this assumption for the inverse kinematics is that motion of the final
three links about these axes will not change the position of Oc, and thus,
the position of the wrist center is thus a function of only the first three joint
variables.

The origin of the tool frame (whose desired coordinates are given by O)
is simply obtained by a translation of distance d6 along z5 from Oc (see
Table 3.3). In our case, z5 and z6 are the same axis, and the third column
of R expresses the direction of z6 with respect to the base frame. Therefore,
we have

O = O0

c + d6R







0
0
1






. (4.9)
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Thus in order to have the end-effector of the robot at the point with co-
ordinates given by O and with the orientation of the end-effector given by
R = (rij), it is necessary and sufficient that the wrist center Oc have coor-
dinates given by

O0

c = O − d6R







0
0
1






. (4.10)

and that the orientation of the frame o6x6y6z6 with respect to the base be
given by R. If the components of the end-effector position O are denoted
Ox, Oy, Oz and the components of the wrist center O0

c are denoted xc, yc, zc
then (4.10) gives the relationship







xc

yc

zc






=







Ox − d6r13
Oy − d6r23
Oz − d6r33






. (4.11)

Using Equation (4.11) we may find the values of the first three joint
variables. This determines the orientation transformation R0

3
which depends

only on these first three joint variables. We can now determine the orienta-
tion of the end-effector relative to the frame o3x3y3z3 from the expression

R = R0

3
R3

6
(4.12)

as

R3

6
= (R0

3
)−1R = (R0

3
)TR. (4.13)

As we shall see in Section 4.4, the final three joint angles can then be
found as a set of Euler angles corresponding to R3

6
. Note that the right

hand side of (4.13) is completely known since R is given and R0

3
can be cal-

culated once the first three joint variables are known. The idea of kinematic
decoupling is illustrated in Figure 4.1.

4.2.1 Summary

For this class of manipulators the determination of the inverse kinematics
can be summarized by the following algorithm.

Step 1: Find q1, q2, q3 such that the wrist center Oc has coordinates given
by

O0

c = O − d6R







0
0
1






. (4.14)
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d6Rk

d
c

0

d
6

0

Figure 4.1: Kinematic decoupling.

Step 2: Using the joint variables determined in Step 1, evaluate R0

3
.

Step 3: Find a set of Euler angles corresponding to the rotation matrix

R3

6
= (R0

3
)−1R = (R0

3
)TR. (4.15)

4.3 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a geo-
metric approach to find the variables, q1, q2, q3 corresponding to O0

c given by
(4.10). We restrict our treatment to the geometric approach for two reasons.
First, as we have said, most present manipulator designs are kinematically
simple, usually consisting of one of the five basic configurations of Chapter 1
with a spherical wrist. Indeed, it is partly due to the difficulty of the general
inverse kinematics problem that manipulator designs have evolved to their
present state. Second, there are few techniques that can handle the general
inverse kinematics problem for arbitrary configurations. Since the reader is
most likely to encounter robot configurations of the type considered here, the
added difficulty involved in treating the general case seems unjustified. The
reader is directed to the references at the end of the chapter for treatment
of the general case.

In general the complexity of the inverse kinematics problem increases
with the number of nonzero link parameters. For most manipulators, many
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of the ai, di are zero, the αi are 0 or ±π/2, etc. In these cases especially, a
geometric approach is the simplest and most natural. We will illustrate this
with several important examples.

4.3.1 Articulated Configuration

Consider the elbow manipulator shown in Figure 4.2, with the components
of O0

c denoted by xc, yc, zc. We project Oc onto the x0 − y0 plane as shown
in Figure 4.3.

θ1

θ2

z0

y0

x0

r

d1

y
c

x
c

z
c

s

θ3

Figure 4.2: Elbow manipulator.

θ1

x0x
c

y
c

y0

r

Figure 4.3: Projection of the wrist center onto x0 − y0 plane.
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We see from this projection that

θ1 = A tan(xc, yc), (4.16)

in whichA tan(x, y) denotes the two argument arctangent function. A tan(x, y)
is defined for all (x, y) 6= (0, 0) and equals the unique angle θ such that

cos θ =
x

(x2 + y2)
1

2

, sin θ =
y

(x2 + y2)
1

2

. (4.17)

For example, A tan(1,−1) = −π
4
, while A tan(−1, 1) = +3π

4
.

Note that a second valid solution for θ1 is

θ1 = π +A tan(xc, yc). (4.18)

Of course this will, in turn, lead to different solutions for θ2 and θ3, as we
will see below.

These solutions for θ1, are valid unless xc = yc = 0. In this case (4.16)
is undefined and the manipulator is in a singular configuration, shown in
Figure 4.4. In this position the wrist center Oc intersects z0; hence any

z0

Figure 4.4: Singular configuration.

value of θ1 leaves Oc fixed. There are thus infinitely many solutions for θ1
when Oc intersects z0.

If there is an offset d 6= 0 as shown in Figure 4.5 then the wrist center
cannot intersect z0. In this case, depending on how the DH parameters
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d

Figure 4.5: Elbow manipulator with shoulder offset.

have been assigned, we will have d2 = d or d3 = d. In this case, there
will, in general, be only two solutions for θ1. These correspond to the so-
called left arm and right arm configurations as shown in Figures 4.6 and
4.7. Figure 4.6 shows the left arm configuration. From this figure, we see
geometrically that

θ1 = φ− α (4.19)

where

φ = A tan(xc, yc) (4.20)

α = A tan
(

√

r2 − d2, d
)

(4.21)

= A tan

(

√

x2
c + y2

c − d2, d

)

.

The second solution, given by the right arm configuration shown in Fig-
ure 4.7 is given by

θ1 = A tan(xc, yc) +A tan
(

−
√

r2 − d2,−d
)

. (4.22)

To see this, note that

θ1 = α+ β (4.23)

α = A tan(xc, yc) (4.24)
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θ1

α

y
c

y0

x
c

x0

r

φd

Figure 4.6: Left arm configuration.

β = γ + π (4.25)

γ = A tan(
√

r2 − d2, d) (4.26)

(4.27)

which together imply that

β = A tan
(

−
√

r2 − d2,−d
)

(4.28)

since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ).

To find the angles θ2, θ3 for the elbow manipulator, given θ1, we consider
the plane formed by the second and third links as shown in Figure 4.8. Since
the motion of links two and three is planar, the solution is analogous to that
of the two-link manipulator of Chapter 1. As in our previous derivation
(cf. (1.8) and (1.9)) we can apply the law of cosines to obtain

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3

(4.29)

=
x2

c + y2
c − d2 + z2

c − a2
2 − a2

3

2a2a3

:= D,

since r2 = x2
c + y2

c − d2 and s = zc. Hence, θ3 is given by

θ3 = A tan
(

D,±
√

1 −D2

)

. (4.30)
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d
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rγ

y
c

x0

y0

Figure 4.7: Right arm configuration.

Similarly θ2 is given as

θ2 = A tan(r, s) −A tan(a2 + a3c3, a3s3) (4.31)

= A tan

(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3).

The two solutions for θ3 correspond to the elbow-up position and elbow-
down position, respectively.

An example of an elbow manipulator with offsets is the PUMA shown
in Figure 4.9. There are four solutions to the inverse position kinematics
as shown. These correspond to the situations left arm-elbow up, left arm–
elbow down, right arm–elbow up and right arm–elbow down. We will see
that there are two solutions for the wrist orientation thus giving a total of
eight solutions of the inverse kinematics for the PUMA manipulator.

4.3.2 Spherical Configuration

We next solve the inverse position kinematics for a three degree of freedom
spherical manipulator shown in Figure 4.10. As in the case of the elbow
manipulator the first joint variable is the base rotation and a solution is
given as

θ1 = A tan(xc, yc) (4.32)
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r

θ2

θ3

s

z0

a2

a3

Figure 4.8: Projecting onto the plane formed by links 2 and 3.

provided xc and yc are not both zero. If both xc and yc are zero, the
configuration is singular as before and θ1 may take on any value.

The angle θ2 is given from Figure 4.10 as

θ2 = A tan(r, s) +
π

2
(4.33)

where r2 = x2
c + y2

c , s = zc − d1. As in the case of the elbow manipulator a
second solution for θ1 is given by

θ1 = π +A tan(xc, yc); (4.34)

The linear distance d3 is found as

d3 =
√

r2 + s2 =
√

x2
c + y2

c + (zc − d1)2. (4.35)

The negative square root solution for d3 is disregarded and thus in this
case we obtain two solutions to the inverse position kinematics as long as
the wrist center does not intersect z0. If there is an offset then there will
be left and right arm configurations as in the case of the elbow manipulator
(Problem 4-12).

4.4 Inverse Orientation

In the previous section we used a geometric approach to solve the inverse
position problem. This gives the values of the first three joint variables
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Figure 4.9: Four solutions of the inverse position kinematics for the PUMA
manipulator.
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x
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c

Figure 4.10: Spherical manipulator.

corresponding to a given position of the wrist origin. The inverse orientation
problem is now one of finding the values of the final three joint variables
corresponding to a given orientation with respect to the frame o3x3y3z3.
For a spherical wrist, this can be interpreted as the problem of finding a
set of Euler angles corresponding to a given rotation matrix R. Recall that
equation (3.32) shows that the rotation matrix obtained for the spherical
wrist has the same form as the rotation matrix for the Euler transformation,
given in (2.52). Therefore, we can use the method developed in Section 2.5.1
to solve for the three joint angles of the spherical wrist. In particular, we
solve for the three Euler angles, φ, θ, ψ, using Equations (2.54) – (2.59), and
then use the mapping

θ4 = φ,

θ5 = θ,

θ6 = ψ.

Example 4.2 Articulated Manipulator with Spherical Wrist

The DH parameters for the frame assignment shown in Figure 4.2 are
summarized in Table 4.1. Multiplying the corresponding Ai matrices gives
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Table 4.1: Link parameters for the articulated manipulator of Figure 4.2.

Link ai αi di θi

1 0 90 d1 θ∗1
2 a2 0 0 θ∗2
3 a3 0 0 θ∗3

∗ variable

the matrix R0

3
for the articulated or elbow manipulator as

R0

3
=







c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0






. (4.36)

The matrix R3

6
= A4A5A6 is given as

R3

6
=







c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5

−s5c6 s5s6 c5






. (4.37)

The equation to be solved now for the final three variables is therefore

R3

6
= (R0

3
)TR (4.38)

and the Euler angle solution can be applied to this equation. For example,
the three equations given by the third column in the above matrix equation
are given by

c4s5 = c1c23r13 + s1c23r23 + s23r33 (4.39)

s4s5 = −c1s23r13 − s1s23r23 + c23r33 (4.40)

c5 = s1r13 − c1r23. (4.41)

Hence, if not both of the expressions (4.39), (4.40) are zero, then we obtain
θ5 from (2.54) and (2.55) as

θ5 = A tan

(

s1r13 − c1r23,±
√

1 − (s1r13 − c1r23)2
)

. (4.42)

If the positive square root is chosen in (4.42), then θ4 and θ6 are given by
(2.56) and (2.57), respectively, as

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.43)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.44)
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The other solutions are obtained analogously. If s5 = 0, then joint axes
z3 and z5 are collinear. This is a singular configuration and only the sum
θ4 + θ6 can be determined. One solution is to choose θ4 arbitrarily and then
determine θ6 using (2.62) or (2.64).
⋄

Example 4.3 Summary of Elbow Manipulator Solution
To summarize the preceding development we write down one solution to

the inverse kinematics of the six degree-of-freedom elbow manipulator shown
in Figure 4.2 which has no joint offsets and a spherical wrist.

Given

O =







Ox

Oy

Oz






; R =







r11 r12 r13
r21 r22 r23
r31 r32 r33






(4.45)

then with

xc = Ox − d6r13 (4.46)

yc = Oy − d6r23 (4.47)

zc = Oz − d6r33 (4.48)

a set of D-H joint variables is given by

θ1 = A tan(xc, yc) (4.49)

θ2 = A tan

(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3) (4.50)

θ3 = A tan
(

D,±
√

1 −D2

)

,

where D =
x2

c + y2
c − d2 + z2

c − a2
2 − a2

3

2a2a3

(4.51)

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.52)

θ5 = A tan

(

s1r13 − c1r23,±
√

1 − (s1r13 − c1r23)2
)

. (4.53)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.54)

The other possible solutions are left as an exercise (Problem 4-11). ⋄
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Example 4.4 SCARA Manipulator
As another example, we consider the SCARA manipulator whose forward

kinematics is defined by T 0

4
from (3.49). The inverse kinematics is then given

as the set of solutions of the equation










c12c4 + s12s4 s12c4 − c12s4 0 a1c1 + a2c12
s12c4 − c12s4 −c12c4 − s12s4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1











=

[

R O
0 1

]

.

(4.55)
We first note that, since the SCARA has only four degrees-of-freedom,

not every possible H from SE(3) allows a solution of (4.55). In fact we can
easily see that there is no solution of (4.55) unless R is of the form

R =







cα sα 0
sα −cα 0
0 0 −1






(4.56)

and if this is the case, the sum θ1 + θ2 − θ4 is determined by

θ1 + θ2 − θ4 = α = A tan(r11, r12). (4.57)

Projecting the manipulator configuration onto the x0 − y0 plane immedi-
ately yields the situation of Figure 4.11.
We see from this that

θ2 = A tan
(

c2,±
√

1 − c2
)

(4.58)

where

c2 =
O2

x +O2
y − a2

1 − a2
2

2a1a2

(4.59)

θ1 = A tan(Ox, Oy) −A tan(a1 + a2c2, a2s2). (4.60)

We may then determine θ4 from (4.57) as

θ4 = θ1 + θ2 − α (4.61)

= θ1 + θ2 −A tan(r11, r12).

Finally d3 is given as

d3 = Oz + d4. (4.62)

⋄
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z0

y0

x0

y
c

x
c

d1

r
z

c

θ1

Figure 4.11: SCARA manipulator.
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4.5 Problems

1. Given a desired position of the end-effector, how many solutions are
there to the inverse kinematics of the three-link planar arm shown in
Figure 4.12? If the orientation of the end-effector is also specified, how

Figure 4.12: Three-link planar robot with revolute joints.

many solutions are there? Use the geometric approach to find them.

2. Repeat Problem 4-1 for the three-link planar arm with prismatic joint
of Figure 4.13.

Figure 4.13: Three-link planar robot with prismatic joint.

3. Solve the inverse position kinematics for the cylindrical manipulator
of Figure 4.14.

4. Solve the inverse position kinematics for the cartesian manipulator of
Figure 4.15.

5. Add a spherical wrist to the three-link cylindrical arm of Problem 4-3
and write the complete inverse kinematics solution.
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θ11m

d2

d31m

Figure 4.14: Cylindrical configuration.

d1

d3

d2

Figure 4.15: Cartesian configuration.

6. Repeat Problem 4-5 for the cartesian manipulator of Problem 4-4.

7. Write a computer program to compute the inverse kinematic equations
for the elbow manipulator using Equations (4.49)-(4.54). Include pro-
cedures for identifying singular configurations and choosing a particu-
lar solution when the configuration is singular. Test your routine for
various special cases, including singular configurations.

8. The Stanford manipulator of Example 3.3.5 has a spherical wrist.
Therefore, given a desired position O and orientation R of the end-
effector,

a) Compute the desired coordinates of the wrist center O0

c.
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b) Solve the inverse position kinematics, that is, find values of the
first three joint variables that will place the wrist center at Oc.
Is the solution unique? How many solutions did you find?

c) Compute the rotation matrix R0

3
. Solve the inverse orientation

problem for this manipulator by finding a set of Euler angles
corresponding to R3

6
given by (4.37).

9. Repeat Problem 4-8 for the PUMA 260 manipulator of Problem 3-9,
which also has a spherical wrist. How many total solutions did you
find?

10. Solve the inverse position kinematics for the Rhino robot.

11. Find all other solutions to the inverse kinematics of the elbow manip-
ulator of Example 4.4.1.

12. Modify the solutions θ1 and θ2 for the spherical manipulator given by
Equations (4.32) and (4.33) in the case of a shoulder offset.
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