Embedded Systems 220

Control Unit Design Notes

The von Neumann architecture is the design of a CPU that consists of an arithmetic logic unit, a control unit, memory, and input and output devices. The innovation in this design is the idea to have the control unit decode instructions from memory, rather than follow some fixed pattern. The control unit is just like the ALU, with the exception that its accumulator (the program counter) controls the flow of the program.

You should design your control unit using the same basic idea that you use for the ALU. That is, you should determine which functional modules you need, and connect these to a multiplexer. The only difference is that unlike the ALU, you cannot just use the opcode for the multiplexer input. Rather, you will need to implement some instruction decoding logic.

As an example, we shall be designing a control unit for the following set of instructions.

00 xx
Halt the CPU (pc := pc).

01 vv
Load an immediate value into the accumulator (acc := vv).

02 vv
Add an immediate value to the accumulator (acc := acc + vv).

03 vv
Subtract an immediate value from the accumulator (acc := acc – vv).

04 aa
Branch to the specified address (pc := aa).

05 dd
Branch by the specified distance (pc := pc + dd).

06 aa
If the accumulator is zero, branch to the specified address (pc := aa).

07 dd
If the accumulator is zero, branch by the specified distance (pc := pc + dd).

The first step is to examine these instructions and produce a complete list of arithmetic operations that can be performed on the program counter. Do not forget to include pc := pc + 1 for those instructions that do not branch anywhere. In fact, your design will be simpler if this if the first arithmetic operation in your list.

[image: image1.png]

00
pc := pc + 1

01
pc := pc
10
pc := operand
11
pc := pc + operand
You should number each operation. Use binary numbers. Following the typical design of an ALU, you should design your CU by building the above four functional blocks and then wiring them into a multiplexer according to the numbers you gave them.

You should not treat aa and dd as being something separate. They should be connected to a register containing the operand of the instruction.

The next step is to design the logic that generates the two-bit input to the multiplexer. This part of the circuit is called the instruction decoder. We shall refer to the multiplexer inputs as y1 and y0.

The instruction decoder should be designed by constructing a truth table. The inputs should be the opcode (x2x1x0) and any condition codes. In this circuit, there is only one condition code, which is the “=0” condition (x3). The outputs are y1y0. There are two output bits, so you will be generating two Boolean functions.

You could construct the truth table entirely in binary and reduce it using Karnaugh maps or the Quine-McCluskey algorithm. However, ReTrO provides nice decoder blocks (the “=c” blocks), so we shall be writing decimal numbers into our truth table.

x3
x2x1x0
y1y0

x
0
01

x
1
00

x
2
00

x
3
00

x
4
10

x
5
11

0
6
00

1
6
10

0
7
00

1
7
11

The x’s in the table are don’t care states. To generate the above table, you need to go through each opcode, and decide which of your four PC operations applies. You only need to consider condition codes for opcodes that are dependent upon the condition.

You should construct the logic for y1 and y0 separately. They are two separate Boolean functions. The resulting circuit is shown below.

[image: image3.png]

Most CPUs address memory in bytes. However, instructions are often larger than a single byte. In our example, the instructions are two bytes long. The control unit needs to be able to step from the first byte to the next, as well as perform branching. A signal from the timing signal generator indicates whether we are stepping or branching. We need to use a one-bit multiplexer for this switch.

[image: image2.png]

Two parts of the control unit are yet to be designed. The first part is the need for two registers to fetch instructions. These registers have not been shown here. The second part is the timing signal generation. There is no straightforward approach to designing the timing signals. Rather, you should try to understand what needs to happen during each clock cycle, and how the timing signals control this.

For most CPUs, in each clock cycle, you need to:

1.
Load the opcode register (Bräunl’s diagrams call this CODE).

2.
Increment the program counter.

3.
Load the operand register (Bräunl’s diagrams call this ADDRESS).

4.
Wait for effective address calculations to fall through to the address bus.

5.
Wait for calculation results to fall through to the data bus.

6.
If the instruction writes to a register, then load that register.

If the instruction writes to memory, then perform the memory write.

7.
Increment/branch the program counter.

There are two types of timing signal. Some are square hat pulses, that clock rising-edge triggered components, such as registers. Others are high or low for extended periods of time. These switch multiplexers, and are high for the exact period of time necessary for other signals to clock rising-edge triggered components.

You need to look at the timing diagram in the lecture notes, and think about it until you understand what each signal is doing. Think about it in terms of what happens in what order during a clock cycle. You need to do this on your own to understand it.

Jason Foo [foo-jr@ee.uwa.edu.au]

Page 3 of 3

