Embedded Systems 220 – Notes on LAB 4

Part 1

Part 2

Scale the range of input values from the analog input channel to produce the range of ‘time high’ values for the output rectangle signal.

Compiling a C program:

· Write and save the program. (eg. aCprogram.c)

· Use gcc68 aCprogram (no extention)

· Transmit to EyeBot using transhex

Waiting in 0.1ms increments:

Lab 3 used the function OSWait when it was required to pause the program. OSWait waits in increments of 10ms, which is not useful in this lab as the required wait time on the high signal is always under 10ms. A simple c procedure that keeps the processor occupied by executing a loop is shown below:

void wait01ms(int n)

 {

 n = n*41; // on the eyebot, 41 iterations of ‘while’ take approximately 0.1ms

 while(n--); // check if the counting variable is zero, then decrement it.

 }
· An integer is passed into the variable n when the procedure is called.

· Variable n is scaled to make the procedure wait in increments of 0.1ms.

· The ‘while’ line decrements the variable n until it reaches 0, the procedure then exits.

Part 3

Take the code from Experiment 2 and replace the calls to OSGetAD and OSWriteOutLatch with calls to your assembly language subroutines.

Example: (Include the file const.i to access OutBase)

MOVE.B #1, OutBase | sets bit 0 of digital output port

MOVE.B #0, OutBase | clears bit 0 of digital output port

C and Assembly Example:

Adding Two Numbers

	 | assembly language (asmFunct.s)

.include “labmac.i” // RoBiOS functions

.include “const.i” // includes OutBase

.section .text

.globl addIntegers

.globl anotherSubroutine

addIntegers:

 Move.L 4(SP),D0 | get a

 Move.L 8(SP),D1 | get b

 ADD.L D1,D0 | result

 RTS

AnotherSubroutine:

 |a routine that can use

 |functions from labmac.i

 |and constants from const.i

 RTS

	// c program – (cProg.c)

#include <eyebot.h>

int addIntegers(int,int);

void main(void)

 {

 int a,b,c;

 // start of c code

 a = 7;

 b = 5;

 // Call addIntegers

 c = addIntegers(a,b);

 // print using routine from eyebot.h

 LCDPrintf(“the result is: %d \n”,c);

 // rest of program follows

 }

To Compile and link:

· gcc68o cProg

· gas68o asmFunct

· gld68o uploadMe.hex cProg.o asmFunct.o

Then load uploadMe.hex to the EyeBot and run.
Declared global for the C program to see the function.

Function addIntegers declared but implemented elsewhere.

Uses offsets to get input as the subroutines return address is in the first 4 bytes of the stack.

