Embedded Systems 220 – LAB 3 notes

Getting Started:

Make sure the EyeBot is correctly connected to the PC.

· Black and red power plugs are connected to the power supply.

· Serial interface: left slot of the EyeBot to the serial port of the PC (COM2).

Writing Programs:

· Login and double click on the ‘EyeBot Prompt’ shortcut on the desktop.

· In the DOS window, change to your home directory; create a directory for your programs and edit/load your file. You can use either the DOS editor by typing ‘edit’ at the prompt or Windows notepad, by typing ‘notepad’ at the prompt.

· Assembly language files have the extension ‘.s’ (eg. hello.s).

Compiling and Running Programs:

· To assemble a single-file program ‘hello.s’ type: ‘gas68 hello’ (without the ‘.s’ extension.) – if there are no errors this will produce a file ‘hello.hex’

· To load a program into the EyeBot:

· On the EyeBot’s main screen press the ‘Usr’ key

· On the EyeBot’s User Program screen press the ‘Ld’ key

· At the DOS prompt type ‘transhex hello’ to transmit hello.hex to the EyeBot.

· To run a program on the EyeBot, on the User Program screen press the ‘Run’ key.

Writing a Simple Program:

For general assembly commands (adding, moving to registers, …) see the lecture notes or Motorola documentation.

A simple program consists of three parts

.include “labmac.i”

.section .data

string1:
.asciz “Hello, world!\n”

press:
.asciz “Hit Me”

.section .text

.global main

main:
MyProgramStartsHere

…

…

MOVE.L #0, %d0 |return 0

RTS

“labmac.i” Routines:

A number of routines, such as OSGetCount to get the system clock, and KEYGet to wait for a button press, are pre-written and can be accessed in a program by including the .include “labmac.i” line in your code.

· Input parameters for the routines are passed through the stack

· Output of routines is put into D0
To execute routine XXX the following convention is used:

1. Push parameters (if necessary) onto the stack

2. JSR XXX

3. Reset stack (if parameters were pushed onto it)

4. Result of XXX is stored in D0

For a description of available routines along with input and output parameters see the RoBiOS documentation:

http://robotics.ee.uwa.edu.au. Choose EyeBot, Controller, and Libraries.

Examples:

1) ‘OSGetCount’ gets the current system clock count requiring no input parameters.

JSR OSGetCount will put the system clock count into D0

2) ‘OSWait’ makes the system wait and takes the wait-time as a parameter in multiples of 100ms

MOVE.L #7, -(%sp) | push 7 onto the stack as the input

JSR OSWait

| waits for 7/100 seconds

ADD.L #4, %sp
| updates stack pointer
3) ‘LCDPrintf’ prints the input pushed onto the stack to screen. If ‘result: .asciz “The result is: %d\n”’ is defined in the ‘.section .data’ program section and the value 7 is stored in register D0, then:

MOVE.L %d0, -(%sp)| push d0 onto the stack as the input

PEA result

| push address of “The result is: ” onto the stack

JSR LCDPrintf
| prints “The result is: 7” to screen

ADD.L #8, %sp
| updates stack pointer
Complete Example:

Program to print 16 characters on the screen, followed by ‘Hello, world!’

.include “labmac.i”

.section .data

string:
.asciz “Hello, world!\n”

.section .text

.global main

main:
MOVE.L #15, D6

|initialise loop variable

loop:
MOVE.L #’*’, -(%sp)
|push character to be printed onto stack

JSR LCDPutChar

|print character to screen

ADD.L #4, %sp

|update stack pointer

SUB.L #1, D6

|decrement loop variable

BNE loop

|if result of last instruction not equal

|to zero, branch back to ‘loop:’

PEA string

|push address of ‘string’ onto stack

JSR LCDPutString
|print the string “Hello, world!”

ADD.L #4, %sp

|update stack pointer

JSR KEYGet

|wait for a key to be pressed

MOVE.L #0, D0

|clear d0 – used as the return value

RTS

|return to the system

Required to define system routines (e.g. LCDPutChar)

Section to define static data

(e.g. strings)

Program section

